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8:30 Opening and Announcements

8:35 Welcoming remarks

Julian D. Cole (Rensselaer Polytechnic Institute, Troy, NY, USA)

V.V. Sychev (Central Aerohydrodynamnic Institute (TsAGI), Zhukovsky,
Russia)

8:45 Opportunities for East/West Collaboration (J.D.A. Walker)

SESSION 1. Chairman:- J.D.A. Walker (Lehigh University, Bethlehem, PA, USA)

9:00 J.S.B. Gajjar (U. of Manchmter, United Kingdom)

Thse nonlinear development of cross-flow vortices in compressible boundlary layers
9:15 Alexander B. Lessen and Vladimir U. Lunev (Central Research Institute of

Machine Building, Kalingrad, Russia)

Abnormal peaks of increased heat transfer on the blunted delta wing in
hypersonic flow

9:30 J.A. Steketee (Delft University, The Netherlands)

Theoretical aspects of the Lagrangian equations of motion for the unsteady
rectilinear fow of an ideal gas

SESSION 2. Chairman E.D. Te et'ev (Computing Center, Russian Academy of
Sciences, Moscow, Russia)39:45 Yu. B. Ti.;h;tz (Central Aerohydrodynamic Institute (TsAGI), Zhukovky,

Russia)

The wind tunnel transonic stabilization law

10:00 M. Barnett (United Technologics Research Center, East Hartford, CT, USA)

Viscid/inviscid interaction analysis of turbomachinery cascade flows

10:15 SM. Manuilovich (Central Aerohydrodynamic Institute (TaAGI), Zhukovsky,I Russia)
On mew methods of delaying laminar-turbulent transition in 8ound-eposed
boundary layers

10:30 Coffee Break

SESSION 3. Chaixman:. Igor L Lipatov (Central Aerohydrodyuamic Institute (TsAGI),

Zhukovsky, Russia)

11:00 S.O. Seddougui (University of Dirmingham, United Kingdom)

Fastest growing G crtler vortices in compressible boundary layers

11:15 V.V. Bogolepov (Central Acrohydrodynamic Institute (TaAGI), Zhukovaky,
Russia)

Asymptotic theory of Gartler vortices

11:30 Lennart S. Hultgren (NASA Lcwis Research Center, Cleveland, Ohio, USA)

Oblique waves interacting with a nonlinear plane wave

SESSION 4. Chairman;- A.P. Rothmaycr (Iowa State University, Ames, Iowa, USA)

11:45 Valery N. Golubkin (Central Aerohydrodynamic Institute (T&AGI), Zhukovsky,
Russia)I Theory of three-dimensional hypersonic flow over a wing at moderate angles
of attac

12:00 J.W. Elliott (University of Hull, United Kingdom)

The influence of srface cooling on compressible boundarylayer stability
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12:15 E.D. Terent'ev (Computing Ccnter, Russian Academy of Sciences, Moscow,

Russia)
A linear problem of a vibration in a boundary layer on a partially elastic surface
elastic surface

12:30 Lunch

SESSION 5. Chairman: V.V. Sychev (Central Aerohydrodynamic Institute (T&AGI),
Zhukovsky, Russia)

2:30 A.G. Walton, R.IL. Bowles and F.T. Smith (Imperial College and University
College London, United Kingdom) I
Vortex waue interaction in a strong pressure gradient

2:45 M.A. Brutyan and P.L. Krapivsky (Central Aerohydrodynamic Institute
(TsAGI), Zhukovsky, Russia)

Weak turbulence in periodic compressible flow

3:00 H.L Cheng (University of Southern Ca.ifornia, CA, USA) 5
On extension of continuum models to rarefied gas dynamics

3:15 V.L Zhuk (Computing Center, Russian Academy of Sciences, Moscow, Russia) II
Soliton disturbances in a transonic boundary layer

SESSION 6. Chairman: F.T. Smith (University College London, United Kingdom)

3:30 H. Herwig (Ruhr-Universitlt Bochum, Germany) 3
The influence of temperature and pressure on boundary layer stability

3:45 A.L. Gonor (Moscow University, Moscow, Russia) 3
Nonlinear asymptotic solutions of flow past thin bodies on entry into a
compressible fluid

4:00 A.E.P. Veldman (Groningen, The Netherlands) 3
Curvature effects and strong viscous-inviscid interactions

4:15 L.V. Ovsiannikov (Institute of Hydrodynamics, Siberian Division of the Russian
Academy of Sciences, Novosibirsk, Russia) I

4:30 Coffee Break

POSTER SESSION I Chairman: M. Barnett (United Technologies Research Center,
East Hartford, CT, USA)

5:00 M.A. Kravtsova (Central Aerohydrodynamic Institute (TsAGI), Zhukovsky, Russia)

Numerical solution for a criss-cross interaction problem 5
V.N. Diesperov (Computing Center, Russian Academy of Sciences, Moscow,
Russia)

The behaviour of seif-similar solutions of boundary layers with zero pressuregradient

I.A. Chernov (Saratov State University, Saratov, Russia)

Parametric representation of exact solutions of the transonic equations

G.N. Dudin (Central Aerohydrodynamic Institute (TsAGI), Zhukovsky, Russia)

Three-dimensionl laminar boundary layer on a finite delta wing in viscous a
interaction with hypersonic flow

Gregory Vylensky (Krylov Shipbuilding Research Institute, St. Petersburg, Russia)

Three-dimensional breakaway model of a free streamline type

C.N. Zhikharev (Central Acrohydrodynamic Institute (TiAGI), Zhukovsky, Russia)

Separation phenomena in a hypersonic flow with strong wall cooling: subcritical I
7:30-9:00 Dinner (Buffet)
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SESSION 7. Chairman: V. Ya. Neiland (Central Aerohydrodynamic Institute (TsAGI),
Zhukovsky, Russia)

8:30 A.F. Messiter (University of Michigan, USA)

Nonlinear instability of supersonic vortex shees and shear layers

8:45 A.M. Gafullin and S.B. Zakharov (Central Aerohydrodynamic Institute (TsAGI)
Zhukonvky, Russia)

Calculation of separated flow on a circular cone with viscous-inmscid interaction

9:00 N.D. Malmuth (Rockwell International Science Center, Thousand Oaks, CA, USA)

Uate~ady hypersonic thin shock layers and flow stability

9:15 N.G. Kumnetaov (Institute for Engineering Studies, Russian Academy of Sciences,
St. Petersburg, Russia)

Wave resistance of a submerged body moving with an oscillating velocity

SESSION 8. Chaikman: A.E.P. Veldman (University of Groningen, The Netherlands)

9:30 S.P. Fiddes (University of Bristol, United Kingdom)

Vortical flow past slender bodies at incidence: ezistencc, uniqueness, bifurcation,3 and stability

9:45 A.G. Kuz'min (St. Petersburg University, Russia)

Weakening of the cumulative phenomenon and shocks in transonic flows

10:00 A.T. Degani (Lehigh University, Bethlehem, PA, USA)
.Structure of the three-dimensional turbulent boundary layer

10:15 E.V. Bogdanova-Ryzhova and O.S. Ryzhov (Computing Center, The Russian

Academy of Sciences, Moscow, Russia)

On the Landau-Goldstein singularity and marginal separation

I 10:30 Coffee Break

SESSION 9. Chairma:u Yu. B. i-fnhitz (Central Aerohydrodynamic Institute (TsAGI),
Zhukosky, Russia)

11:00 Julian D. Cole, M.C. Kropinski and D. Schwendeman (Rensselaer Polytechnic
Institute, Troy, NY, USA)

Construction of optimal critical airfoils
11:15 A. Kluwick, Ph. Gittler and RJ. Bodonyi (Technische Universitit Wien, Austria

and Ohio State University, Columbus, OH, USA)

I Viscous-inviscid laminar interaction near the trailing tip of an axisymmetric body

11:30 A.L Ruban (Central Aerohydrodynanic Institute (TsAGI), Zhukovsky, Russia)

7The generation of Tolimein-Schlichting waves by free-stream turbulence

SESSION 10. Chairman: A. Kluwick (Tecnische Universitit Wein, Austria)

11:45 S.J. Cowley and X. Wu (University of Cambridge and Imperial College, United
Kingdom)

Nonlinear modulation of instability modes in shear flow

12:00 A.V. Fedorov and A.P. Khokhlov (Moscow Institute of Physics and Technology,
Moscow, Russia)

Receptivity of a supersonic boundary layer to sound near the leading edge of ajlat plae

S12:15 P.Y. ILgr~e (UniversitA Paris, France)

Influence of the entropy layer on viscous triple deck hypersonic scales
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SESSION 11. Chairman: A.L Ruban (Central Aerohydrodynamic Institute (T&AGI),
Zhukomky, Russia)

2:30 V. Zonbtsov and G.G. Soudakov (Central Aerohydrodynamic Institute (TsAGI),
Zhukovsky, Russia)

Asymptotic solution of an axisymmetric ideal-flo problem for a cavity apez region

2:45 R- Puhak, A.T. Degani and J.D.A. Walker (Lehigh University, USA)

Separation and hea transfer upstream of obstacles

3-00 Victor V. Sychev (Central Aerohydrodynamic Institute (TsAGI), Zhukovsky,
Russia)

Asymptotic theory of vortex breakdown

3:15 S.N. Timoshin and F.T. Smith (University College London, United Kingdom) 3
On the nonlinear vortez-Rayleigh wave interaction in a boundary-layer flow

SESSION 12. Chairman Jii. Cole (Rensselaer Polytechnic Institute, USA)

3:30 L.L. Van Dommelen (Florida State University, USA)

Lagrangian, computation of 3D unsteady separation

3:45 A.F. Sidorov (Institute of Mathematics and Mechanics, Ural Branch of the
Russian Academy of Sciences, Ekaterinburg, Russia)

Analytic methods for the study of adiabatic compression of a gas

4:00 Rowena G.A. Bowles, Bharat T. Dodia and F.T. Smith (University College
London, United Kingdom)

Aspects of transitional-turbulent spots in boundary layers

4:15 A.P. Rothmayer, R Bhaskaran and D.W. Black (Iowa State University, Ames,Iowa, USA)

On two-diynensionaJ, incompressible laminar boundary layer separation near
aqoil leading edges

4:30 Coffee Break

POSTER SESSION 2: Chairman: Oleg S. Ryzhov (Computing Center, Russian Academy I
of Sciences, Moscow, Russia)

5:00 A-P. Khokhlov (Moscow Institute of Physics and Technology, Zhukovsky, Russia)

Asymptotic model of triad evolution in boundary layers i

V.S. Sadovsky (Central Aerohydrodynamic Institute (TsAGI), Zhukovsky, Russia)

On drag and thrust forces in an ideal fluid flow with constant vorticity I
N.S. Bakhvalov and M.E. Eglit (Moscow State University, Moscow, Russia)

Asymptotic analysis of small-disturbance propagation in miztures

V.N. Trigub and S.E. Grubin (INTECO srl, Frosinone, Italy)

The asymptotic theory of hypersonic boundary-layer stability

V.B. Zametaev (Central Aerohydrodynamic Institute (TsAGI), Zhukovsky, IRussi)

Thin shock layer theory with interaction: marginal regime

LG. Fomiua (Central Aerohydrodynanic Institute (TsAGI), Zhukovsky, Russia)

Unsteady flow on the leading edge of an oscillating airfoil

7:30-9:00 Dinner-Buffet 3
I
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SESSION 13. Chairman: S.C.R. Dennis (University of Western Ontario, Canada)

8:30 A.T. Conlisk (Ohio State University, USA)

An asymptotic approach to vortez-body collisions

8:45 Igor 1. ipatov (Central Aerohydrodynamic Institute (TsAGI), Zhukovsky,£ Russia)
Study of nonstationury processes of a strong vscous-inviscid interaction

9:00 Thomas C. Adamson (University of Michigan, USA)

Viscous effects on critical flow in the exit region of a thin channel

9:15 Igor V. Savenkov (Computing Center, Russian Academy of Sciences, Moscow,

Resonant interactions and solitons in inlet pipe flow

SESSION 14. Chairman: A.G. Kulikovsky (Mathematical Stekdov Institute, Moscow,I Russia)
9:30 L. Pamela Cook and G. Schleiniger (University of Delaware, USA)

Some azisymmetric transonic flows

9:45 Yu. Shmyglevsky (Computing Center, Russian Academy of Sciences, Moscow,

3On solutions of both the Euler and the Navier-Stokes equations

10:00 S.C.R. Dennis (University of Western Ontario, Canada)

Boundary-layer models for flow past a cylinder

10:15 S.I. Chernyshenko (Moscow University, Russia)
High Reynolds number structure of steady two-dimensional flow through a row

of bluff bodies

10:30 Coffee Break

SESSION 15. Chairman: T.C. Adamson (University of Michigan, USA)

11:00 R.G.A. Bowles and F.T. Smith (University College Iadon, United Kingdom)

Weakly and fully nonlinear effects in channel flow transition: an czperimental
comparison

11:15 A.G. Kulikovsky (Mathematical Steklov Institute, Moscow, Russia)

On transition to intability in flows that depend on a slowly-varying spatial£ variable: stability of pipe flow

11:30 J.Ph. Brazier, B. Aupoix and J. Cousteix (ONERA/CERT, Toulousa, France)

I Asymptotic equations for the boundary layer using a defect formulation

SESSION 16. Chairman: L.V. Ovsiannikov (Siberian Division of the Russian Academy
of Sciences, Novosibirsk, Russia)

11:45 V.N. Trigub, A.B. Blokhin and I.N. Simakin (INTECO srl, Frosinone, Italy)

Asymptotic study of dissipation and breakdown of a wing-tip wortez

12:00 F. Stephan and E. Deriat (ONERA, Chatillon, France)

Energy transfer from a turbulent boundary layer mean flow to 3D large scale waves

12:15 G.L. Korolev (Central Aerohydrodynamic Institute (TsAGI), Russia)

SFlow separation and non-uniqueness of boundary-layer solutions

12:30 LunchI
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SESSION 17. Chairmnna A.F. Sidorov (Ural Branch of the Russian Academy of Sciences,

Ekaterinburg, Russia)

2:30 K. Camel and J.D.A. Walker (Lehigh University, USA)

Viscous-inviscid interactions in unsteady boundary-layer separation

2:45 M.V. Ustinov (Central Aerohydrodynamic Institute (TsAGI), Russia) 3
Generation of secondary instability modes by Tollmcin-Schlichting wave
scattering from uncven walls

3:00 M. E. Goldstein (NASA Lewis Research Center, Cleveland, OH, USA) 5
Oblique instability waves in nearly parallel shear flows

SESSION 18. Chairman;A M.J. Werle (United Technologies Research Center, East Hartford,
CT, USA)

3:15 Panel Discussion

J. D. Cole, S.P. Fiddes, A.I. Ruban, F.T. Smith, J.D.A. Walker I
4:30 Coffee Break

5:00 Cooperative Research Seminar (J.D.A. Walker)

8:00 Conference Banquet
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I THE NONLINEAR DEVELOPMENT OF CROSS-FLOW VORTICES

IN COMPRESSIBLE BOUNDARY LAYERS

I by
J. S. B. Gajjar

Mathematics Department
Oxford RoadUniversity of Manchester

Manchester M13 9PL
United Kingdom

t This paper is concerned with the nonlinear spatial/temporal development of both
stationary as wen as non-staitic a r l r t ory i ces in compressible boundary layers.I ~Unsteady nonlinear critical layer theory as used to study fir--t the linear stability
properties of disturbances in a fully three-dimensional boundary flow, and this is then
followed by an investigation of the nonlinear effects.

After suitable approximations the problem for long-wavelength non-stationary
vortices can be shown to be very similar to that for the evolution of oblique modes in
planar boundary layers, Gajjar 1993). The mean boundary layer profile in the cross-
flow direction gives rise to a problem involving the solution of two coupled unsteady
nonlinear critical layer equations at the upper and lower critical layers. The amplitude
of the cross-flow vortex is directly coupled to the unsteady jumps arising across both

critical layers and this interplay, and interaction with the critical layer dynamics
strongly influences the nonlinear development of the vortex. The numerical solution of
this coupled problem is currently in progress and will be described.

The theory for the nonlinear development of stationary cross-flow vortices is
different in that the nonlinear critical layer dynamics is coupled with the properties of
an unsteady wall layer. This problem is quite involved although some special cases can
be studied, and these will be discussed.3 Finally, it will be shown how the analytical results from the linear (and
nonlinear) stability analysis can be used to compute growth rate curves for three-
dimensional compressible boundary layer flows. The analytical results compare very
favourably with full numerical solutions of the linear stability equations and provide a
more versatile tool for exploring the parametric dependence of Mach number, heat
transfer etc. on the stability properties of the base flow.I

I
I
I
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ABNORMAL PEAKS OF INCREASED HEAT-TRANSFER ON

THE BLUNTED DELTA WING IN HYPERSONIC FLOW

by

Alexander B. Lessen
Moscow Forest Engineering Institute

and

Vladimir U. Lunev
Central Research Institute of Machine Building

Kalingrad, Moscow Region
Russia 141070 1

In hypersonic flow, the strong influence of a small nose bluntness on the laminar
heat-transfer pattern on the windward surface of thin long wings was discovered in the
experiments of Gubanova et al. (1992). This effect consists of two narrow longitudinal
bands showing increasing heat-transfer rate. These strips are almost parallel to each
other and dose to the center line of the wing; they start at the point (or region) A of I
the impingement of the strong front bow shock (cused by the nose bluntness) at the

leading edge of the wing, as shown in F'gure 1. The same result was also obtained by
solving the Navier-Stokes equations. This phenomenon is a purely hypersonic one.
With decreasing Mach number M from 14 to 8, it weakens substantially and becomes
appreciable only with an increase of the wing half-angle (from the usual 15 up to 25
degrees). Moreover, it was not observed at M =6 at all. The maximum effect is
re at an angle of attack about 10, and it has a tendency to vanish at decreasing of U
angle of attack to 0 or at angles beyond 15 degrees.

Attempts at explanation of this effect are presented below. Previously known
cases of the appearance of the local heat-transfer rate peaks are caused, as a rule, by a
local maximum of pressure, but here the strips occur at nearly constant pressure, equal
approximately to that on a sharp wing. Therefore these strips must arise from another n
cause.

We connect them with a specific region of flow divergence which we will refer to
as the inertial one due to interaction of the front shock with the leading edge. In these
cases, the "impingement spot" of local pressure takes place in the vicinity of the point U
A. This interaction region is observed for a sharp leading edge, provided that the front
bow shock is axisymmetric as for a blunted cylinder. There is a discontinuity in the
flow parameters in this region, and its break-up forms the spot mentioned above. The
gas passing this spot expands to the wing pressure level and then spreads out in a
longitudinal direction far from the origination. This leads to the formation of a bundle
of divergent stream lines, a decrease of the boundary-layer thickness and, consequently,
a rise in the heat-transfer rate. Owing to the constant pressure, the stream lines in this I
bundle are nearly straight, and the three-dimensional heat transfer law gives almost
constant heat-transfer increase ratio, dose to 1.7 for a cone to wedge, as is seen from
Figure 1 for the data at a large distance from the nose. I
References

Gubanova, 0. I., Zemliansky, B. A., Lessin, A. B., Lunev, V. V., Nikul• n, A. N. and
Susin, A. V. 1992 "Anomalous Heat-Transfer on the Windward Surface of the
Triangular Wing with Blunted Nose in the Hypersonic Flow", Collection of Reports
Aerospace Aircraft Aerodynamics of the Annual Workshop-School of the Central
Aerohydrodynamics Institute, Part I, Zhukovsky, Moscow Region, Russia. U
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Figure 1. Heat-transfer on the wing with a ~iase bluntness of radius 1R
1 -x/R =37, 2 -x/R =100I ___for blunt leading edges of radius 0.5R

-- for sharp leading edges5 ------ for sharp nose and leading edges
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THEORETICAL ASPECTS OF THE LAGRANGIAN EQUATIONS OF MOTION I
FOR THE UNSTEADY RECTILINEAR FLOW OF AN IDEAL GAS

by 3
J. A. Steketee

Department of Aerospace Engineering
Delft University of Technology

The Netherlands

1. The paper is occupied with the unsteady, one-dimensional (rectilinear) flow of an
ideal gas with constant specific heats cc and c, while neglecting effects of viscosity
and heat conduction. The equations ofmotion for these problems are usually taken
in the Eulerian form with the independent variables (x,t), but here we take the
Lagrangian form with the independent variables (h,t), h the Lagrangian mass
coordinate and t the time. The equations of motion then take the form 5

av = 0, -u+ = 0, pV7 = B(h) = b(h)7 , (1.1)

with u the velocity, p the pressure, V the specific volume, while B(h) = b(h)7

determines the entropy distribution in the gas. The gas is called homentropic when
B(h) is a constant, non-homentropic when B(h) is h-dependent.

In the first part of the paper a systematic study of the equations (1.1) is made by
introducing the analogous of 'potentials' and 'stream functions' together with their I
Legendre Transformations. In this way and with little effort, a survey is obtained
of the simplest forms of the equations of motion. Several of these equations have
appeared in the literature for special problems, usually after a good deal of not very I
transparent manipulation. Also second order potentials are introduced. A very
simple form appears for the second order potential 4(h,t). The problem then
reduces to solving the equation 3

Ojj(Ohh)1 + B(h) = 0, (1.2)

with 5
V=-hh, u=Oht, P = -Ott (1.3)

and subscripts denoting partial derivatives.

2. The second part of the paper begins with constructing the characteristic equations
of the set (1.1).

For a homentropic gas, the classical Riemann invariants 5
r=u+ 2_, s~-2--a = -• 2

7 -1 V' -1l

are obtained. It is then shown that for a non-homentropic gas with I
I
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B(h) = Bo - (37 - 1), (2.1)

I (generalized) Rieman-invariants r* and s* exist with

I r*=K+h(u+- ), s*=K+h(u---i a), (2.2)

where K is a potential for the momentum equation in

The gas with B(h) given by (2.1) is called the Lms-gas after G. S. S. Ludford,I M. H. Martin and K. P. Stanyukovich.

Two simple examples of the flow of an LMS-gas are discussed. These are

1 (i) a flow with r* = constant, s* = constant,

(ii) two domains of type (i) flow, separated by a normal shock-wave.

IIt is finally shown that the flow of LMS-gas may be obtained from the flow of a
homentropic gas by applying a simple transformation, due to K. P. Stanyukovich
(1954). In the first instance, the transormation applies to the mass coordinate h
and the second order potential 41, but the transformation rules for the other
parameters u, p, V etc. are also deduced. Some other restrictions, for example that
h should be positive, are discussed and may be removed.

3. The Transformation of Stanyukovich generates the flow of an LMS-gas, once a flow
of a homentropic gas has been given. In the third part of the paper, the
Transformation of Stanyukovich is generalized to the form of a 3-parameter
continuous transformation group, which is closely related to the projective group on
a line. The transformation rules for the different parameters of the problem are
constructed. In particular it is found that the transformation rules for the
Riemann invariants r, s, r* and s* are linear transformations. This may be of some
interest for the representation of the group in contrast with the realization of the
group. Some simple applications of the Transformation group will be presented.

Finally the three infinitesimal operators of the G3 are constructed together with
several extended operators. They are transforinations close to the identity
transformation and generate small perturbations to a given flow, which are
contained within the group manifold. Partial differential equations to be satisfied
by these perturbations can be written down, and the proper infinitesimal
increments, when substituted in these equations, reduce them to identities. It will
be illustrated by some simple examples.

I
I
I
I
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THE WIND TUNNEL TRANSONIC STABILIZATION LAW

by

Yu. B. if-shitz
Central Aerohydrodynamic Institute (TsAGI)

Zhukovsky-3, Moscow Region
Russia 140160

It is well known that the local Mach number distribution on an airfoil surface in 3
transonic flow is a weak function of the Mach number at infinity. This so-called
"stabilization7 law was established experimentally at various times in many countries.
One can find a formulation with numerous examples in Holder's lecture delivered in I
commemoration of Reynolds and Prandtl in 1964, or in a paper by Krishtianovich et al.
(1948), which was subsequently reprinted in a collection of the scientific papers of
Krishtianovich collection. Later this law was generalized by Diesperov, Lifshitz and
Ryzhov to unbounded flows using a transonic method of singular disturbances.

One of the wind tunnel stabilization law explanations was cast by Khristianovich
et al. (1948) in terms of a blocking effect. If the law was valid, the airfoil surface Mach
number distribution would be independent of upstream conditions. But in the
unbounded flows the dependence exists and is governed by the flow characteristics at a
large distance from the body. Because the far fields of the bounded and unbounded
flows differ appreciably, quantitative expressions of the stabilization law can be different I
in these cases. The asymptotic estimation of how flow parameters on an airfoil in a
wind tunnel test section with porous walls depend on the von Karman transonic
similarity parameter is the topic of this paper.

The problem is solved by the singular disturbance method which has been
developed in the study of unbounded flow at the Mach numbers near unity and in
related problems. It is assumed that the test section can be simulated by an infinite I
two dimensional channel with parallel porous walls. Let (x, y) denote Cartesian

coordinates with x measured along the channel and y = 0 being the channel center line.
An airfoil placed along y =0 has length L and the relative thickness T < 1. The
distance between the walls is 2H, and the velocity of oncoming gas differs slightly from
the critical velocity a.. In accordance with the transonic small-perturbation theory
(which can be used under these assumptions), a perturbation potential relative to a
uniform sonic flow along the x axis is represented in the form

11(x, y) = a* L2 13 ''(x', y3; t) +..., x' = x/L, y, = yT1/ 3/L. (1)

The principal term in the expansion of V'(x', y'; t) with respect to r satisfies the von
Karman equation

- (I+l)§ZZZ +t=O, (2) 1
in which x is Poisson's adiabatic exponent and the primes on all variables here and
below are omitted. On the airfoil Y = TLy(x), the solution of equation (2) satisfies the
no-flow condition transferred to the interval 0< x <1 of thexis. The Darcy linear
condition is usually used on the permeable walls at Y = + -r" H/L. Its compressible
counterpart is of the form I

*ui- (K + •)KI/2 = 0, K=2(r +l1)- 1 r- 2/ 3(l- Mo) (3)

I
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I where IA is a constant. This relation is valid for walls having a transverse slit when

K > 1, but apparently becomes meaningls in the limit K--+O. An attempt to obtain
the limiting equation at K =0, which is a local relation satisfying the similarity
transformation (1) and is exact for supersonic velocity, leads to

-P, ±U /P sign('I1 ) ==0. (3)

In the case K < 1, the potential is represented as the sum

3 2=- i(x, y; p, r1/ 3 H/L) +6(K) O(x, y; i, rT/ 3 H/L),

in which V is the potential of t? flow in channel for K = 0, 6 is a small parameter that
tends to zero as K-i}, and 'k is a 'nmction arising from the variation of the boundary
condition on the wall when K departs from zero. At K = 0 there is always a sonic point
0 on the tunnel wall, at which the sonic line begins with the arrival of the airfoil.
According to the singular disturbance method, we take 0 as a characteristic point of the
problem andexpress 'pasa series in distance from 0. If equation 3) is valid and 0,the principal term of the potential po expason in the neighborhood of this point isdescribed by a self-similar solution of equation (2)

I '=y3n- 2ft(C), -=(K+1)-1/2 xy-f, n=3, (4)

in a local Cartesian coordinate system with origin at the point 0. The function fL(C)
satisfies a second-order nonlinear differential equation. A first integral may be found
and the behavior of the solution is completely investigated. The results of the analysis
show that a solution in the form (4) exists, is unique, and analytic along the
characteristic C -_ that arrives at the point 0 from the airfoil. Along the characteristic
C +; there are discontinuities of the fourth derivatives. Shock waves are not present inthe solution.

Outside a certain neighborhood of the point 0, the function ,b(x, y) can be
represented in the form

3 0=y7-•g1 1(C)+..., v>0, (5)

in which g1,(z) satisfies the homogeneous second-order linear equation

I - 9C2 ) d+[fg+ 6(5-,v)C¢] - (7-,)(6-,n) g, = 0. (6)

The integrals of equation (6) satisfying the condition (3) pass through the singular point
C = C1 where ft= 9ý2. Here, one linearly independent solution of equation (6) is an
analytic function, and the other increases proportional to (C - C1)- 2; the coefficients of
these solutions are functions of v. Therefore, v must be chosen such that the coefficient
of the solution which increases without bound at C C1 is zero. As a result, we obtain
the required spectrum v = 12, 24, ....

To establish the dependence S(K), we make a transition from the present
variables to dimensional ones by the transformation (1). Because equations (2) and (3)I are invariant under this operation the same product 7rL m  can appear i the
transformed expressions for Wo and 6?K)O. When using this for their pjincipal terms
given by equations (4) and (5), we obtain the required relation 8(K) = K', which is theI same as in the unbounded flow over an airfoil. This equation is a mathematical
formulation of the stabilization law in the test section of a wind tunnel with porousI walls.

I
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VISCID/INVISCID INTERACTION ANALYSIS 5
OF TURBOMACHINERY CASCADE FLOWS

by3

Mark Barnett
United Technologies Re•ea-ch Center

East Hartford, Connectizut 06108

Efficient, accurate, steady analyses for predicting strong inviscid/viscid
interaction(V) phenomena such as viscous-layer separation, shock/boundary-layer
interaction and trailing-edge/near-wake interaction in blade passages are needed to
predict the performance of turbomachinery cascades, particularly at off-design operating I
conditions. Two such analyses have been developed and are described in this talk.
Both use an inviscid/viscid interaction approach, wherein high Reynolds number flow is
assumed, allowing the flowfield to be divided into two regions: an outer inviscid region, I
and an inner or viscous-layer region, which is governed by Prandtl's equations. The two
analyses differ principally in the approach used to predict the outer inviscid flow field.
One technique assumes that the flow is governed by the Euler equations, which permits
strong shocks and rotational flow, and the other method assumes potential flow. Finite-
difference methods are used for the viscous-layer analyses and for the potential inviscid
analysis, and a finite-volume approach is used to solve the Euler equations. The
inviscid and viscid solutions are coupled using a semi-inverse global iteration procedure 3
which permits the prediction of boundary-layer separation and other strong-interaction
phenomena. Results for several cascades covering a wide range of inlet flow conditions
are discussed, including conditions leading to large-scale flow separation, and I
comparisons with Navier-Stokes solutions and experimental data are shown. The
factors that currently limit the accuracy of the M approach are also briefly discussed. I

I
I
I
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5 ON NEW METHODS OF DELAYING LAMINAR-TURBULENT

TRANSITION IN SOUND-EXPOSED BOUNDARY LAYERS

* by

S. V. Manuilovich
Central Aerohydrodynamics Institute (TsAGI)

Zhukovsky-3, Moscow Region
Russia 140160U

It is well known that sound can be an unfavorable influence in reducing the
n portion of aerodynamic boundary layers. Refletig from the wing surface,

sound generates unstable waves (Tollmien-Schlt waves), which undergo linear
amplificatio and nonlinear interactions, and eventually lead to turbulence. Acoustic
disturbances excite Tollmien-Schlichting waves only via scattering by longitudinal
nities in the boundary-layer flow, such as in the vicinity of the wing nose or

over local unevenness of the wing surface. The latter mechanism of unstable wave
generation may be removed by smoothing the wing surfaces. However, the leading-edge
inhomogeneity is a nonremovable one. The proposed methods of boundary-layer
laminarization are based on the possibility of mutual cancellation of Tollmien-
"Schlichting waves excited near the leading edge and over artificial unevenness on

m surfaces. Such cancellation is achieved by a special choice of the
unevenness form. This paper is devoted to a mathematical justification of the methods
in question.

Let us consider a two-dimensional flow over a straight smooth wing at low Mach
number. We introduce a coordinate system with an origin at some point on the wing
surface, with streamwise z-axis, and with y-a-xis normal to it. We denote time by t a•n
the disturbance streamfuinction by 0. We suppose that the boundary-layer flow is
lamin near the coordinate origin. Furthermore, we suppose that the boundary layer is
disturbed by sound waves having a frequency w. As stated above, the acoustic wave
generates Tollmien-Schlichting waves in the vicinity of the leading edge. The
disturbance of the boundary-layer flow due to this unstable wave near the coordinate
origin takes the form

TS = e i) exp(ia - i) + C.C.

Here e denotes the complex amplitude of the acoustic wave, a denotes the complex
wavenumber of the Tollmien-Schiichting wave, and c denotes its complex coupling
coefficient; 0(y) is the complex eigenfunction. This wave is amplified as it propagates
downstream, and then it induces laminar-turbulent transition.

In order to enlarge the length of the laminar flow portion, we change the local
surface geometry. Let us suppose that the wing surface has a two-dimensional artificial
unevenness, near the origin,

3 y= f(z). (1)

The height of the unevenness (1) is assumed to be small with respect to the boundary-
layer thickness. As Ruban (1984) showed, such unevenness generates Tollmien-
Schlichting waves by sound scattering. The form of this 'artificial' unstable wave is

iT.S = e F(a) A 4(y) exp(iaz-iw) +C.C.,

U
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where A is a specific complex coupling coefficient, and F(a) is the Fourier transform of
the unevenness form defined by:

+00) f(T) exp(- ikT) dz. (2)3F k)=T J
-- 00

Corisider the family of unevennesses 5
f =a g(z-x), (3)

where A and X chara the height and the location of the unevenness, respectively. I
The phase of the artificial unstable wave grows linearly with X, so the unevenness
location allows control of this phase. The amplitude of the generated wave may be
controlled by varying the unevenness height. I

Let

X= ur + arg G(a) + arg A - arg c

h IcI exp(-X mn a), 3h=IG(cf)l RA

where G is the Fourier transform of the function g (see Manuilovich, 1990). As a result,
the condition of Tollmien-Schlichting wave cancellation is satisfied:

0r" + O4s= 0. (4) 3
Note that the form of the unevenness cancelling the incoming Tollmien-Schlichting
wave is independent of e. So the condition of cancellation (4) is fulfilled automatically
regardless of the values of the amplitude and phase of the acoustic waves. The above-
described method of Tollmien-Schlichting wave cancellation was suggested in
Mauuilovich (1990).

Thus far it has been assumed that the acoustic field is mono-harmonic. In the
real situation an engine noise spectrum contains multiple frequencies. The Tollmien-
Schlichting waves corresponding to these frequencies may also be amplified by an
unstable boundary-layer flow. In this connection, it is necessary to develop a methodfor cancellation of a number of Tollmien-Schlichting waves with distinct frequencies.
The following circumstances indicate the possibility of such a generalzation.

First, note that the mono-harmonic receptivity problem can be generalized
directly to the case of discrete spectra of sound: the proper receptivity problems may
be solved independently for each value of the acoustic frequency. Each Fourier
component of sound generates two unstable waves of the appropriate frequency (in the
vicinity of the leading edge and over the unevenness). Second, the condition ofI
Tollmien-Schlichting wave cancellation (4) is equivalent to the ratio

F~f) c(5) .
From the viewpoint of Fourier analysis, the equality (5) is in fact the condition imposed
on the unevenness Fourier transform at the only point k = a (in the complex k-plane)
corresponding to the sound frequency. Considering more complicated families of I
unevenness than (3), it is possible to satisfy the condition of cancellation for a set of I

I
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I frequencies. Thus the conditions of Tollmien-Schlichting wave cancellation for N
frequencies present N complex equalities (5). Consider the system of 2N fimdamental
humps (or hollows) placed at constant step d,

2N
f = F c. g( - md). (6)

m=1

Substituting (6) into the above equalities and separating the real and imaginary parts,
we obtain a real system of 2N linear algebraic equations for the real amplitudes cn.
The value d of the step in (6) must be chosen so that the system in question would besolvable.

Introduce the total coupling coefficient cT_S, i.e. the ratio between the complex
amplitudes of the resulting Tollmien-Schlichting wave and the acoustic wave generating
it by

I cTs = c + F(a) A.

This ratio characterizes the receptivity of the boundary-layer flow with respect to
acoustic disturbances. At a given amplitude of sound, a decrease of IcT_ leads to an
increase of the length of laminar flow, so that the magnitude of the total coupling
coefficient is a significant parameter which should be taken into account in laminarized
airfoil design. The methods of boundary-layer laminarization described in this paper
may be regarded as reducing the total coefficient to zero by means of changing the
airfoil geometry.
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FASTEST GROWING GORTLER VORTICES IN I
COMPRESSIBLE BOUNDARY LAYERS

by

Sharon 0. Seddougui
School of Mathematics and Statistics

University of Birmingham
Birmingham B15 2TT

United Kingdom

The present investigation is motivated by recent interest in the development of
hypersonic aircraft which might well be capable of reaching speeds of Mach number in
the order of 20-25. Of concern is the importance of GCrtler vortices in boundary layers
of regions of curvature and, in particular, their growth rates. They may be an
important factor in the transition from a laminar flow to a turbulent one. I

In the incompressible case Denier, Hall, and Seddougui (1991), hereafter referred
to as DHS, showed that for large GCrtler numbers, the most dangerous CGrtler vortices
have wavelengths small compared to the boundary-layer thickness and are trapped near I
the wall.

For compressible flows the fastest growing GCrtler vortices for 0(1) Mach
numbers have been identified by Dando and Seddougui (1991), hereafter referred to as
DS. They showed that in the inviscid limit of large G6rtler number and O(1)
wavenumber, two modes exist which can be described by parallel flow effects. One
mode is trapped in a layer near the edge of the boundary layer with growth rate tending
to a constant as the wavenumber increases. The other mode has the vortex activity
confined to a thin layer adjacent to the wall with growth rates larger than those of the
trapped-layer modes and increasing as the disturbance wavenumber increases. Thus,
the inviscid limit does not predict a fastest growing mode.

Inspection by DS of a viscous mode dose to the right-hand branch of the neutral
curve showed that the growth rate of this mode increases as the wavenumber decreases.
This mode was shown to exist in a thin layer away from the wall.

As suggested by the above results, DS showed that there exists an intermediate
region where the viscous mode and the inviscid wall layer mode overlap. This occurs
when their growth rates are the same size. In this intermediate region the vortices are
confined to a thin wall layer and are governed by viscous effects. This situation for
0(1) Mach numbers is the same as that for the corresponding incompressible case since
the effects of compressibility may be scaled out leaving the incompressible problem I
solved by DHS. It was shown by DHS that the most unstable mode occurs in this
intermediate region.

The significance of this most unstable mode, apart from having a larger spatial
growth rate t he inviscid wall layer modes or the viscous mode close to the right-
hand branch of the neutral curve, is that it occurs close to the wall. This suggests that
significant coupling coefficients will be possible in the receptivity problem for the most I
unstable modes. This was shown to be the case for the incompressible problem by
DHS, and identical results for a compressible fluid with 0(1) Mach number may be
inferred simply from the results of DHS.

For hypersonic speeds, DS showed that the inviscid trapped layer mode is
located in the logarithmically small temperature adjustment layer at the edge of the

I
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I boundary layer. Of concern is whether the most dangerous mode for hypersonic speeds
occurs dose to the wall, as in the incompressible and supersonic cases, or at the edge of
the boundary layer in the temperature adjustment layer, as this will have important
consequences in the receptivity problem as described above. By considering the large
Mach number limit of the most dangerous supersonic mode described above, we show
that the growth rate of this wall layer mode decreases as the Mach number increases.
This suggests that the wall layer mode may not be the most important mode for
hypersoinic flow. We show that this is indeed the case.

Two modes, in addition to that described by DS, have been identified trapped in
the temperature adjustment layer. The first by Hall and Fu (1989) who described a
viscous mode governed by parallel effects, and the second by Fu and Hall (1992) who
considered crossflow effects on an inviscid mode. We show that each of the hypersonic
modes described above may be the fastest growth mode, depending on the size of the
Gartler number.
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ASYMPTOTIC THEORY OF GORTLER VORTICES

by

Vladimir V. Bogolepov
Central Aerohydrodynamic Institute (TsAGI)

Zhukovsky-3 Moscow Region
Russia 140160 3

The occurrence and development of Gortler vortices in a boundary layer Y ear a
concave surface is investigatedlfr high Reynolds number Reo = UoL/V= - > > 1
and Gortler number G -- 2Re L/R--2Ka//e> > 1. Here Uoo is the uniform free-
stream velocity, L is the distance along the surface from its leading edge to the vortex
incipience point, v is the kinematic viscosity, R is the surface curvature radius, and I
L/R = aeK, K - 1, e < a < 1. Using the method of matched asymptotic expansions (Van
Dyke, 1964), a solution of the Navier-Stokes equations is constructed for three-
dimensional disturbed regions with characteristic dimensions Ax, Ay and Az; the x-axis
is the flow direction, the y-axis is normal to the surface and the z-axis is in the
transverse direction.

It is found that for Ay - Az - e6/S/a1/5 < 6 _ e, Ax _ (e/M) 3/5 < 2 (6 is the
characteristic boundary layer thickness), the incipience and development of vortices
closely adjacent to the surface is described by the solution of the following boundary-
value problem: y

u-+vy+wz = 0, Re,(uuz + vuy + wuz) = uyy + uzz , (1)

Rei(uv. + vvy + wvz + u2 + py) = vyy + vz I
Rel(uw +vwy+wwz+pz)=wyy+wzz

u=v=w=--0 (y=0); Rel =AK1/ 2(A/2,.)5/2 ''I1

u-ay, v, w--0, p-*-y 3/3 (as x--oo or y-4oo) 3
u, v, w, p(x,yz) =u, v, w, p(x,y,z+22w); A=(uZy)y=0,

where u, v, w are the velocity components, p is the pressure, Re, is the local Reynolds I
number, A is the vortex wavelength and uo(y) is the velocity profile in the boundary
layer at the point of vortex incipience. Numerical solutions for linear theory (Van Dyke,
1964) 1

Af(x,yz) = F(y) exp (fix)(sinz, cosz), f = u, v, w, p (2)

have been obtained by Bogolepov et al. (1988) and 1Tmoshin (1990). It was found that I
the reduced vortex amplitude increment - fl/Rej is maximum. As Rel-*oo, the
dissipative terms (Van Dyke, 1964) vanish, and the solution for linear theory
(Bogolepov, 1988) was obtained analytically

8n--n-1/2, n=l, 2 , 3,... (3)

This agrees with the numerical solutions (Timoshin, 1990; Bogolepov and Lipatov, I
1992). As Re1--*0, fin ~ Re1 and convective terms also vanish (Van Dyke, 1964); but
then the convection mechanism required for vortex generation is excluded from the
consideration. Therefore, an increase in A must be compensated for by a rise in

I
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3 characteristic velocity, so that the local Reynolds number remains finite; this is possible
when the vortices move away from the surface (Hall, 1982; Bogolepov and Lipatov,
1992).3 _or the voices lifted by a , qharacteristic height h Ax2 < ~,
(C/ae) < Ax<(<fr) <1 with Ay eAx and Ax - (d3/eAx)l/, the bouxndary-
value problem is as follows:

vy+wz=O, uX+v(1+uy)+wuz=uzz, vx+vvy+wvz+Glu=vzz , (4)

3 wX+vwy+wwZ+pZ=wZZ, u,v,w,p-'O (x-- -ooory--i--oo) ,

u, v, w, p(x, y, z) = u, v, w, p(x, y, z + 2T), G1 = 2Ku0 u0 y(A/2zr)4 -- 1

I where u, p are the disturbance fimctions and Glis the local Gortler number. The

solution of the system (4) in a linear approximation (2) is derived analytically and

5 G 1 =(1 +fn) 2 , n=1, 2, 3,...

This determines the value G =1 for irutrpa short-wave vortices. The solutions (1)3 and (4) are matched as Re1--4d or h-ýý 6 /w"ae (Bogolepov and Lipatov, 1992).

WhT 2 the vortices occupy the entire width of the boundary layer, i.e. with
Ax - (e/!e) < 1, Ay e Az 6£-- e, their incipience and development is described by3 the solution of the following boundary-value problem

ux+vy+7 3wZ=O, uux+vuy+ 7 3wuz=O (5)

S-Y 2 713(uVx+vvy+' 3 wvZ)+u 2 +Py=O

uwX+VWy+7 3ww,++PZ=O, v=O(y=O)

Su"'u°(-lY)' P-*-+ f u~dy, v, w-+O (x-- - co or y-aoo)3 u, v, w, p(x, y, z)=u vw0 ~ , ,z2U, , W P~' y Z)= u2 v, W, p(x, y, z + 2zr).

For simplicity, a velocity profile corresponding to an intensive suction is used in the
boundary layer according to

I u 0 =1-exp(-7 2 y), v 0 = - 2 /61, u0(6 1) =0, 99 , (6)

5 where 6b is constant. If the vortices are located inside the boundary layer and A < 6
then 7 1 = A/212r6, 0 < Yl -< 1, 72 =- -3 = 1 and the linear solution of equations (5) and(6)
are obtained in the analytical form, viz.

I 6;-2 =.1 (n2 -1)/2+n, n=1,2,3...

which reduces to equation (3) with 71-1-0. If A > 61, then 7i = 73 = 1, 2= (2r61/) 2,
0 < -y2 _< 1 and

n2 = (n2-1)12 + 114n, n=1,2,3 ....3 (7)

I It should be noted that #1 =72 1/4"-+w as 7y2-'ID, which means that the incipience of
the first vortex modc takes place at smaller distances than that of all subsequent modes.

If the vortices are not localized inside the boundary layer and A > 61, then
71l = 72 = 1, 7 3 = 2r/A, 0 < 73 < 1 and

U
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"73/f2n=(n 2-1)/2+7y3 n, n=123. .... (8)

Here only 1---4l as 3, ad -, // 2-- 0 for n > 1. In the general case, with
Ax ~ (e/a)Y <1, Ay.~Az-Ia • > •, the triple-deck structure of a disturbed
flow (Hall, 1983; Roshko et al., 1988; Timoshin, 1990; Bogolepov and Lipatov, 1992) is U
realized, and in the linear approximation (2)

75P2- 3-Y4fS/ 3Ai"(0) = 1 (9) 5
is obtained, where 74 and 75 represent the extents of layer interaction between each
other. When 73 = 74 = 0 and -5 = 1, it follows from (8) and (9) that fil = 1. 3

For long-wave vortices with Ax ~, Ay & e-6, Az - (at) 1/2 > 6 _ E, we have a
boundary-value problem of the following form (see also Hall, 1983, 1988).

uX+vy+Wz-=O, Re2(uux+vuy+wuz)=uyy , (10) I
u 2 + py = 0, Re2 (uwX + vwy + wwZ + P2)= wyy , Y

u=w=0, v-=(61/ReO)vO (y=0), u--+' w-4O, p--+- u2dy (y-o),

u = U, v = ( 1/Re)v 0 , w =0, p -j uS dy (x=(l~e2/d5?)x4 J)3

u, v, w, p(x, y,z) = u, v, w, p(x, y, z + 218 Re2 - 27rK1/ 2 6,1/2/A - 1,

where x- - 1 is the streamwise coordinate corresponding to vortex incipience, and Re2 is I
the local Reynolds number. It is worth noting that it is only necessary to take into
account longitudinal variations of the flow functions in this regime. The numerical
solutions of the syste_975 (6), (10) for linear theory show that fl1 = 0, when R 0486
and ft--,(-3Ai(0)2 - s 1.6', aR-- (see (9) at 74 = 1 and 75=0) ReA 6 20=0with K,. sw 2.32 and 62--+(213) 6kLt's0.81'2"when Re2--,oo (see (7) with 7y2--+01. f2-

In summary, a dassification scheme of vortex incipience and development has £
been constructed. The numerical soluta'.i of the system (1) is obtained in a one-mode
approximation. A considerable reduction in the rate of the vortex amplitude increaseand a significant distortion of the initial velocity profile in the boundary layer are

predicted; these are caused by nonlinear interaction of the flow field disturbances. A
variety of velocity component disturbance profile., are presented.
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3 OBLIQUE WAVES INTERACTING WITH A NONLINEAR PLANE WAVE

by

Lennart S. Hultgren
National Aeronautics and Space Administration

Lewis Research Center
Cleveland, Ohio 44135USA

I The downstream evolution of a resonant triad of initially noninteracting linear
instability wave in a boundary layer with a weak adverse pressure gradient is
considered. The triad consists of a two-dimensional fundamental mode and a pair of
equal-amplitude oblique subharmonic modes that form a standing wave in the spanwise
direction. The growth rates are small, and there is a well-defined common critical layer
for these waves. The flow outside the critical layer remains a linear perturbation about
the steady two-dimensional boundary-layer flow and is described by small-grawth-rate
solutions to the Rayleigh stability problem, but the critical-layer flow evolves through a
number of different stages. As in Goldstein and Lee (1992), the wave interaction takes
place entirely within this critical layer and is initially of the parametric-resonance type
which enhances the spatial growth rates of the subharmonic but leaves that of the
fundamental unaffected. In contrast to Goldstein and Lee (1992), where the plane wave
is completely linear in the parametric-resonance stage, the initial subharmonic
amplitude is assumed small enough so that the fundamental undergoes nonlinear
saturation due to self-interaction effects within its owr critical layer before it is affected
by the subharmonic. The initial wave interaction is weak in the sense that it enters the
critical-layer problem that produces the subharmonic velocity jump as an
inhomogeneous term determined at lower order (rather than through a coefficient). The
two-dimensional fundamental mode exhibitslinear growth in this stage and the
subharmonic amplitude is explicitly determined by a single integro-differential equation.
The downsteam asymptotic expansion of the analytic solution to this equation
determines the scaling for the next stage of evolution in which the fundamental becomes
nonlinear. The fundamental is then governed by the strongly nonlinear critical-layer
problem analyzed in Goldstein, Durbin and Leib (1987), but with viscosity accounted
for in the critical-layer dynamics. The subharmonic evolution is now dominated by the
parametric-resonance effects and occurs on a much shorter streamwise scale than that of
the fundamental. Its critical layer is therefore much thicker than that of the
fundamental in this stage. The solution to the relevant subharmonic-amplitude
equation is the downstream asymptotic expansion of the solution for the previous stage,
but with the linearly growing fundamental amplitude replaced by the corresponding
strongly nonlinear critical-layer solution. The subharmonic amplitude continues to
increase during this parametric-resonance dominated stage, even when the fundamental
amplitude saturates, and it eventually becomes large enough to influence the
fundamental. This leads to a new stage of development in which all waves evolve on
the same shorter streamwise length scale, which means that the fundamental and
subhariaonic critical layers are again of equal thickness. The relevant amplitude
equations are then the saw- as in Goldstein and Lee (1992), but with the linear growth
terms omitted.
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THEORY OF THREE-DIMENSIONAL HYPERSONIC FLOW

OVER A WING AT MODERATE ANGLES OF ATTACK

by3

Valery N. Golubkin
Central Aerohydrodynamic Institute

Zhukovsky-3, Moscow Region I
Russia 140160 3

This study is devoted to the development of an asymptotic approach in the
theory of three-dimensional hypersonic flow over a thin wing at finite angle of attack.
This flow regime is characterized by a dominant contribution of the lower-wing surface I
to aerothermodynamic characteristics. A thin layer of gas, compressed by a strong bow
shock wave, covers the lower surface. Additional compression is due to intensive
thermochemical reactions (primarily, high temperature disassociation), which results in
a decrease of the effective ratio of specific heats. Therefore, the well-known thin shock
layer concept (G. G. Chernyi, W. D. Hayes, J. D. Cole as a limit (corresponding to the
tendency of specific heat ratio 7 to unity) has prov to be very productive for both
development of the full theory and practical calculations having acceptable accuracy.
In the asymptotic thin shock layer method, the limiting process y--,1, Mo-*oo is used,
and the solution is sought in the form of expansions in a small parameter e, which
characterizes the inverse density ratio across the strong bow shock. The limiting case of I
an infinitely thin shock layer (e =0) corresponds to a Newtonian flow model. In the
present study, the theory of the first approximation described a three-dimensional thin
shock layer structure on a wing of small aspect ratio. The most general case is studied
when the wing aspect ratio and thickness have the same order of magnitude as the
Mach angle and the layer thickness respectively (A. F. Messiter). In this case, the bow
shock is attached to the wing apex, but can be either attached to or detached from a
sharp leading edge. Also the leading term expansion for the shock shape is unknown a
priori and Rankine-Hugoniot relations are applied on a shock surface, which itself must
be determined from the solution. According to hypersonic cross section law for slender
bodies at high angles of attack (V. V. Sychev), an approximate similarity law is
obtaýued, which correlates numerical and experimental data over a fairly broad range of

parameters. A new integral of gas motion in a thin shock layer was discovered. It has
shown conservation of the streamwise vorticity component along streamlines. This
made it possible to obtain the general analytic solution of the nonlinear shock layer I
equations. Thus the initial three-dimensional problem reduces to quadratures for the
gas dynamic functions and to a simpler two-dimensional integro-differential equation,
relating the shock and the wing shapes. Analytical and numerical solutions for delta I
wings, as well as for more complex wing planforms, have shown interesting flow
properties as follows: (i) stabilization of shock shape in a conically-transonic region, (ii)
local pressure peaks in the vicinity of the symmetry plane, (iii) formation of additional
lines of flow convergence and divergence, and (iv) intensive vorticity generation near
the point of shock detachment from a curvilinear leading edge. Analysis of some
singularities was accompanied by separation and asymptotic consideration of
corresponding subregions in the flow field, for example, the neighborhoods of singular
cross section with multi-zone structure Comparisons with calculated numerical results
and experimental data show that the first approximation considered yields Newtonian
local and total aerodynamic characteristics if e < 1, even though the asymptotic theory
requires that e < 1. I

I
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1 Figure 1. Lift and centerline pressure coefficient vs. incidence.

The application of present analytical solution has allowed the formulation and
solution of a variational problem to determine an optimal wing shape having a
maximum hypersonic lift-to-drag L/D in the first approximation as compared to a
Newtonian one. Finally, the problem is reduced to minimization of a linear functional
under different constraints. An explicitly analytical form of the functional shows that
to produce sufficiently large L/D, the base plane projection of the leading edge of theIwing must lie below the attached shock section by this plane passing through a straight
trailing edge. As a result, the optimized wing of a given planform area and span has a
concave lower surface and a forward part which is not bent down, at least near the
leading edges. A bifurcational behavior in the optimization process has been found with
an abrupt switch from a sharp apex planform to a cut apex, if the span is reduced (seei Figure 2).
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5 THE INFLUENCE OF SURFACE COOLING ON

COMPRESSIBLE BOUNDARY-LAYER STABILITY

3 by
J. W. Elliott

Department of Applied Mathematics
University of Hull

Hull, HU6 7RX

g United Kingdom

To prevent damage to the surface of aircraft during sud hypersonic
flight, surface cooling is often applied, especially at high Mach numbers. It is therefore
of interest to know the effects of such cooling on the instability and transition properties
of the local compressible boundary layer. This investigation discusses theoretically the
influence of surface cooling on compressible boundary-layer stability at high Reynolds3 numbers, Re, with special regard to the high Mach number limit.

Surface cooling enhances the heat transfer and shear stress of the basic boundary-
layer flow at the surface. The increased surface velocity gradients cause the typical
viscous-inviscid wavelength to decrease and so alter the three-tier, triple-deck flow
structure associated with the TS wave. For large values of the free-stream Mach
number Mo,, the mean flow has a two-tier form to allow the temperature to adjust fromI being O9(M ) near the wall to being unity in the free stream. This has thel dt of
increasing the wavelength of the viscous modes. Indeed when Mco is O(Re ), we
have to account for the non-parallelism of the basic flow. Thus the combination of high
Mach number and surface-cooling is a delicate balance.

The first flow structure we sha_ sder is that for the moderate cooling, where
the surface temperature T. is O(Re- ) and Moo is O(1). This of the compressible
Rayleigh inviscid type across the majority of the boundary layer, but is quasi-steady in
form, which admits a pressure-displacement interaction with the viscous sublayer.
More cooling increases the spatial growth rates still further, with the disturbance being
concentrated relatively near the surface and the flow structure again changes. The
resulting severe cooling flow structure allows compressibility effects to enter the
dynamics of the thin viscous sublayer. This work is an extension of that by Seddoughi
et al. (1990), who showed that for the linear Chapman law the spatial growth rates
become comparable with the growth rates of inviscid modes, rendering previously stable
modes unstable. Here we apply the nonlinear viscosity-temperature (p oc T) law which
is, especially at high Mach number, more physically realistic. Further we also discuss
the transonic realm, cross-flow effects, and consider upper-branch properties.

The second study is the effect of wall cooling on the viscous-inviscid TS modes
when the ontel flow 0y *oc. The present analysis addresses the weak interaction

I regime (x = P- -- 71).For a surface temperature

TW T= O(X• ),

the flow structure is of triple-deck type with a length-scale O(x). The neglect of any
pressure variation across the main deck requires

I U28 )C .CRl6
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the lower limit corresponding to moderate cooling at large Mach number. Further
cooling leads to equations identical in form to the case where X is 0(1) and the
'Newtonian approximation' of specific heat close to unity applies.

Given the increased-instability properties found here for cooled surfaces, the
corresponding nonlinear processes at higher disturbance amplitudes should also be of
much interest with respect to transition. We hope to consider both the finite time
nonlinear break-up and forms of vortex-wave interaction. For example, the high-
frequency form of the moderate-cooled stage suggests a possible avenue of attack.
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A LINEAR PROBLEM OF A VIBRATION IN A BOUNDARY LAYER

ON A PARTIALLY ELASTIC SURFACE

3 by
E. D. Terent'ev

The Computing Centre
Russian Academy of Sciences
Moscow, Vavilov Street, 40

iRuss 117=

Within the theory of the plane-parallel boundary layer with free interaction, the
linear problem of a vibrator on a flat plate is considered. Usually, such a problem is
studied for a stiff plate. In this work, a part of the plate behind the vibrator is assumed
to be elastic.I

Usually the normal tension on the surface of the plate is greater than the tangential one
and the model of elastic interaction between gas and surface is chosen. It means that
the deviation of the elastic part from its neutral state is proportional to the excess
pressure:

I -p = xoYw, c < x<d,

where p is the excess pressure, r. is the stiffness coefficient, y. is the deviation of the
elastic surface from the neutral position y = 0. Whereas the application of Laplace and
Fourier transforms in a problem with a completely stiff plate leads to an explicit
expression from the surplus pressure image, the problem with a partially elastic plate is
reduced to an integral equation for the pressure on the elastic part of the plate,

IL~1 00 1+0 At ________) 
_

I o iao

,.|+'0 - W t e- i° z A•)(t)X/• A) dz d
f X.

0 C •

where Lf(w,i) is the Laplace-Fourier image of the vibrator t t, x) and Aj4z) is the
Airy function. After solving this equation, the determination of the whole pressure is

U
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done with traditional methods of computation of the inverse Laplace-Fourier
transforms. It is found that in such a formulation of the unsteady problem, for the start
of a harmonic vibrator (fQ(t, x)= 0 for t < 0; f0(t, x) = f(x) sin wot for t >_ 0), the excess
pressure tends to a harmonic oscillation with a limiting amplitude at large time. This
means that in linear problem there is no resonance leading to an unbounded pressure
increase. The parameteji,. of this oscillating regime depend on the vibrator frequency
and the length of the elastic part. By changing the stiffness coefficient and the length
of the elastic part, it is possible to affect the Tollmien-Schlichting waves generated by
the vibrator. It is found that for some conditions, the elastic part can decrease the
amplitude of the Tollmien-Schlichting waves. U
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VORTEX-WAVE INTERACTION IN A

STRONG ADVERSE PRESSURE GRADIENT

by

A. G. Walton
Department of Mathematics

Imperial College
London =W7 2BZ
United Kingdom

and

5 . G. A. Bowles and F. T. Smith
University College London

Department of Mathematics
London WCIE 6BT

United Kingdom

It is well-known that in the presence of a large adverse pressure gradient driving
the high-Reynolds-number flow past a solid surface, the steady two-dimensional
boundary-layer equations develop a singularity at the streamwise location at which the
skin-friction vanishes (Goldstein, 1948). This result is interpreted usually as an
indication that the physics involved at this stage in the flow development can no longer
simply be described by the concept of a non-interactive boundary-layer driven by an
external flow. The study of Stewartson (1970) indicates that this singularity is notremovable in the sense that it cannot be smoothed out on a shorter length scale around
the point of separation.

The present theoretical, high-Reynolds-number study considers the stability ofI the flow slightly upstream of separation where we introduce three-dimensional
Tollmein-Schlichting waves of sufficiently large amplitude to induce strong three-
dimensionality into the mean flow. The non-linear interaction of the wave with the
mean flow is described in the context of triple-deck theory, leading to governing
equations of the form described in Hall and Smith (1991). The assumption of a large
adverse pressure gradient simplifies the boundary-layer equations considerably, and the
problem reduces to one of solving for the three-dimensional skin-friction field subject to
non-linear forcing by the wave. The initial development of this interaction can bestudied analytically by means of a linear analysis.

It is not immediately clear as to what the ultimate effects of the wave forcing
upon the skin-friction will be and, in particular, whether the flow will still separate, but
subsequent numerical solutions of the governing equations indicate that the wave
amplitude grows in a singular fashion as some streamwise location is approached. This
position is dependent upon the spanwise wavelength imposed on the waves but is always
upstream of the point at which the Goldstein singularity develops in the undisturbed
flow. A feature of this 'blow-up' is that the skin-friction remains regular and positive
although strong variations in the spanwise direction are observed in the numerical
computations. To study the interaction further will require the consideration of the
flow development over a shorter streamwise length scale with the pressure-displacement
interaction between the boundary-layer flow and the induced free-stream response
becoming significant. At this stage, it is unclear what the result of this new effect will
be.
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In summary, it would seem possible, at least in principle, that the separation of
the boundary-layer could be delayed by the introduction of three-dimensional
disturbances of the appropriate amplitude, slightly upstream of the expected separation
point. A similar local stability analysis dose to the separation point is possible for mean I
flows of a marginally-separating nature where the skin-friction tends to zero in a regular
fashion. Once again, numerical integration of the non-linear governing equations
indicates the possibility of a finite distance blow-up in the wave amplitude, with the
location of the singular point now dependent upon the angle of inclination to the free-
stream as well as the spanwise periodicity of the wave. 3
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3 WEAK TURBULENCE IN PERIODIC COMPRESSIBLE FLOWS

by

3 M. A. Brutyan and P. L. Krapivsky
Central Aerohydrodynarnic Institute (TsAGI)

Zhukovsky-3, Moscow Region3 Russia 140160

In spite of numerous investigations of hydrodynamic stability, it remains difficultI to obtain analytical results even for incompressible flows and even in the context of
linear stability theory. In this study we find the exact value of the critical Reynolds
number R• for a class of special viscous gas flows, namely two-dimensional flows,
induced by a unidirectional external force field that is periodic in one of the spatial
coordinates. It is known that the simplest such flow, the so-called Kolmogorov flow,
permits a thorough study of the stability problem for incompressible fluids, and it is
considered as an example through which transition to turbulence may be studied. As far
as we know, this approach has not been completely fulfilled even in the two-dimensional
incompressible case and even numerically. We perform the first part of the research forSthe compressible case, i.e., we predict the long-wave instability when the Reynolds
number exceeds some threshold value and describe the formation of a large-scale
streamwise coherent structure for Kolmogorov-like flows. For the rather simple case of
a monatomic gas with constant transport coefficients the Kolmogorov flow (in the
dimensionless form) becomes (Brutyan and Krapivsky, 1992)]:

u=sin(y), T=poo+acos2 (y), p-=p., p=p/T (1)

with poo = 3/(5M2 ) where M is the Mach number.

Let us assume the flow (1) becomes unstable at some critical Reynolds number
RC. The determination of is based on the assumption that near the stability
threshold 0 < R - RC < 1, the critical wave number approaches zero. This suggests that
a long wavelength approximation can be applied to the Navier-Stokes equations. InSorder to use the long-wave app tio.,a small parameter e is introduced by the
relationship Rt 1 = - ý) . The introduction of e is motivated by the previous
studies (see, e.g., MeshalLin and Sinai, 1961; Nepomnyashchy, 1976; Sivashinsky, 1985;
and Brutyan and Krapivskky, 1991) of the stability of the Kolmogorov-like flows in an
incompressible fluid, where it was found that the critical wave number for the onset of
instability is proportional to e. Thus the typical size of a coherent vortex in the

longitudinal direction is much greater than the period of the flow (x = e- 1).

I As in the incompressible case, we assume that the onset of instability for the
Kolmogorov flow in a viscous compressible gas is also associated with zero wave
number. Hence we shall take advantage of a long-wave character of the instability. An
analogy with the incompressible case (Meshalkin and Sinai, 1961; Nepomnyashchy,
1976; Sivashinsky, 1985; and Brutyan and Krapivskky, 1991) suggests introducing slow
space-time variables and rescaling the hydrodynamic variables according toIs

Si=cx, y$=y, t=e4t, u=fi, v=e-', T=T, p=poo+eP, p=A (2)

Equations (2) indicate that near the stability threshold a large scale longitudinal
coherent st•ure is formed. We see that the streamwise size of this structure scales as
(R-P%)- , while the temporal scale is (R-_R)-3 Substituting (2) into the Navier-Stokes equations and then expanding the
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kinematic and thermodynamic variables, fi = u. + eu4 +. etc., we obtain a set of
equations in the zeroth, first, and second approximations. In the zeroth approximation,
the longitudinal velocity, density, temperature and entropy remain undisturbed, while
vO and Po become

o= T X po (2y), (3) 1
where 4o(x, t) is an arbitrary function. It is worth noting that the solution (3) exists at
arbitrary P,. Similar analysis of the first approximation shows that the solution exists I
only at the Tollowing definite value of the critical Reynolds number

Pcoo + (q/4X) - (iq/3X) < sin2(2y)/T 0 > (4)

P oo~ < Cos(y T > + 6 - + +3) pc, < sin2(2y)/T > 2

Here we have used the shorthand notation < (... )> = (2w) -II(. ...)dy to denote an
average in y. For the most interesting case of a small Mach &umber M, formula (4)
reduces to

where the ratio ij/X was approximated by 4/15 as predicted by the kinetic theory of
diluted monoatomic gases. As the Mach number decreases, this result reduces to the
well-known result of Meshalkin-Sinai (1961), RC = 42.3

Figure 1 represents Rc = R (M) for q/36 = 4/15. The stability threshold is seen
to increase with M over the iCnterval 0 < M < MIM 1 = 0.8752. .. , PR(M 1 )= 1.4605...)
and to decrease with M over the interval 1 <M<M2 (M2 = .0222 .. .). The
unexpected behavior of R - R (M) at M 1 requires some explanation. A full
discussion of this point wiZ not' given here, but it may be argued that the non-
monotonic behavior of RC = Rd(M) takes place outside the realm of the continuum
description. Actually, a well-nown relation between Mach, Reynolds and Knudsen
numbers, Kn = M/R, shows that when M- v1 and R- v1, the Knudsen number is also
0(1), i.e., the main assumption of a continuum model is violated. Thus, the behavior of

Sat M v 1 is an artifact of using the continuum Navier-Stokes equations. -

The multiple-scale technique described in this paper can be generalized on
arbitrary smooth periodic unidirectional gas flows U = f(y). In particular for the small
Mach number, the critical Reynolds number may be expressed as

RC=(f>)-I +112 < 2,>-l1g <f2f2 >54 - 5< f2 > < >M+'"' (6)I

+ f <fl> M2+.](63

where f, is defined from the equations dfl/dy = f and <f 1 > =0. For the simplest
Kolmog6rov flow, f(y) = sin(y), equation (6) Zoincides with (W). I

We believe that our results provide some insight into the phenomenon of
spontaneous formation of large-scale coherent structures in two-dimensional turbulent
compressible flows.

Brutyan, M. A. and Krapivsky, P. L. 1991 "Stability of Viscous Unidirectional Flows
in Three Dimensions", Phys. Lett. A152:211-214.
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ON EXTENSION OF CONTINUUM MODELS TO RAREFIED GAS DYNAMICS

by

H. K. Cheng 1
Department of Aerospac Engineering

University of Southern California
Los Angeles, California 90089-1191

USA

I
As advances progress in the modelg of aerodynamic flows, recent works in

extending the continuum gas dynamic models to rarefied hypersonic flows are based on
Burnett s Equations (Fiscko and Chapman, 1988; Zong et aL, 1991a; Zong et al., 1991b) £
and on Grad's thirteen-moment equations (Cheng et al., 1989; Cheng, 1991; Cheng et
al., 1992). The needs of compatible boundary conditions in the application of these
equations, the gas-kinetic basis of these models, and other theoretical and
computational issues are examined along with solution examples and their comparison
with Direct Simulation Monte-Carlo calculations. Prospects and limitation of their
further extension to model high-temperature nonequilibrium flow for a diatomic gas far

from trans~lational equilibriulm are discussed.
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3 SOLITON DISTURBANCES IN A TRANSONIC BOUNDARY LAYER

by

IV.l. Zhuk
The Computing Centre

Russian Academy of SciencesI= Moscow, Vavilov Street, 40
Russia 117333

Il
We consider a compressible viscous fluid flowing past a flat plate. It is supposed

thkt the Mach number Mo of the undisturbed stream is limited by the requirement* M&-I = 6Y., where 6 is small parameter and Kco = O(1). We are interested in the
neighborhood of some point on the plate at a distance L from the leading edge. A
suitable defiD;fion of the Reynolds number is bas ,nI•, In the double limit Re--oo,

- -reamwie coordinate scale Re- - VL and the time scale
Re- 6- LU*- are introduced. Such scaling laws are combined with theadditional assumption that the longitudinal velocity perturbation amplitude is of the
--order of 'UO, and the evolution of disturbances is then controlled by a free interaction.
This leads immediately to the governing equation

_ _+A _._I a2 f j" .A(it) d,,d1

W W S x _(t-)(x-•)_- K (t _ 1) 2 (

Here A(t, x) can be regarded as a displacement thickness of the boundary layer. TheI integration domain S is given by the inequalities

-- S: q < t, ý < x - Kjý(t - q).

If the transonic similarity parameter K--i, + oo, equation (1) transforms into the
Burgers equation

A.AOA 1 A

In the opposite limit Koo-+ - oo, equation (1) reduces to the Benjamin-Ono equation

i 
_00 a 2A(t,) ___

As an example, the analytical solution of the non-linear integro-differential
equation (1) is

A=c+ k [I+ 2 1_°2 13 ~ ~(c- Koo)1 / 1oi+a2-2o cos[k(x-ct)]J (2
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The four independent parameters c, k, or, Ko in equation (1) are subject to the
constraints 0 < o, < 1, c > KYo, k > O. The periodic solution (2) can be represented as a
superposition of repeated equidistant solitons. It is easy to check that the solitary wave
solution 1

A= 4c
1 +c 2(c- Ko)(x- ct)?

satisfies equation (1).

The validity of the governing equation (1) corresponds to a four-deck asymptotic
structure in the disturbed boundary er. The nonlinearity is contained within a 3
region near the wall. In the cas Re6 - < 8 < 1, this region subdivides into an outer
inviscid part and an inner viscous sublayer.

The displacement function A(x,t) gives the slip velocity at the bottom of the
inviscid zone. Periodicity conditions of a regular solution in the above-mentioned
viscous sublayer, driven by the edge velocity (2) then establish a relation between the
four parameters:

k-= c(c-_Ko.) 1/2(1-_ 10 0-2 +..) (3)

The expression (3) can be interpreted as a generalization of the dispersion relation in I
linear stability theory to the finite-amplitude case. In the limit or--'O, the solution (2)
describes an infinitesimal Tollmien-Schlichting wave and the dependence (2) approaches
the neutral curve of transonic-flow stability. I
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3 THE INFLUENCE OF TEMPERATURE AND PRESSURE

ON BOUNDARY LAYER STABILITY

3 by
H. Herwig

Institut fir Thermo- und Fluiddynamik
Ruhr - Universitit Bochum

4630 Bochum 1, Postfach 102148
Geblude 1B 8/1453 Germany

3 Classical linear stability theory is extended to include the effect of temperature
and pressure dependent fluid properties. These effects are studied asymptotically. The
basic approach starts from a Taylor series expansion of the properties with respect to
temperature and pressure. Next, a regular perturbation is applied to the basic
equations of stability with the constant property case representing leading order
behavior governed by the Orr-Sommerfeld (OS) equation. In this asymptotic approach,
all effects are well separated from each other, and only the Prandtl number remains as a
parameter. In their general form the asymptotic solutions hold for all Newtonian fluids.

In the method of small disturbances, all uantities are decomposed in a mean
value, !*, and a superimposed disturbance a'T. Here a* represents the velocity
components u* and v* (two dimensional flow) and the pressure p*. When variable
properties are involved, it also represents these properties, i.e. density p*, viscosity p*,
thermal conductivity k and specific heat c, as well as the temperature T*. Due to the
temperature dependence of the properties, the modified OS equation must be
supplemented by the thermal energy equation of the disturbance.

With a* representing one of the physical properties, the Taylor series expansion
reads

a A = 1 + dKaTO + dWapp + O(e2, !2, ea),

with aR

ATR* a- KT MW2  -a

Here e and 1 are introduced as small (perturbation) parameters. The Taylor series are
truncated after the linear terms. When the series are continued to higher orders,
additional Ka- values appear which contain second and mixed derivatives for the next
higher order. KaT and Kap are properties of the fluid. Owing to the decomposition
a= X + 1 exp[ia(x- at)], the mean value and amplitude function are

I= 1+E.KaTO+E.Kap7p+(E 2, •2, el), j = dKaT0 + apPl+ O(e2, g, el).

This suggests the following expansion of all mean flow and disturbance quantities:

a = ao + e(KPT alp + KFT a,. + KkT alk + KcT alc)
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+ (KPP i14 + KOP ailp + Kkp Ilk + Kcp a+ ic) + O(e2, !2, e), I

where a represents: U, fi, V, 17, P5, O7 e, 0, 0, Z. Inserting these expansions into the 3
basic stability equations and collecting terms with respect to eKT, etc., gives the
asymptotic equations for the temperature and pressure influence.

This method is applicable to all flow situations where temperature and pressure
variations of the physical properties involved are important. Various examples will be
given.

I
I
U
I
I
I
U
I
I
I
I
U
I
I



* 35

NONLINEAR ASYMPTOTIC SOLUTIONS OF FLOW

PAST THIN BODIES ON ENTRY INTO A COMPRESSIBLE FLUID

3 by
A. L. Gonor3 Institute of Mechanics

Moscow University
Moscow, Michurin Av., 1

Russia 117192

Linear solutions of problems on the flow past thin bodies entering a fluid have a
major drawback since they diverge near the vertex of the body; this makes it impossible
to determine the flow characteristics in the neighborhood of the vertex and, most
importantly, the magnitude of the maximum pressure at the nose of the body. Here, by
the method of matched asymptotic expansions, we find a composite solution of the
problems of the flow past, and the entry of, thin bodies into a compressible fluid (forincompressible fluids, see Gonor 1986, 1991). The new solution is based on considering
nonlinear terms in the Cauchy-Lagrange (Bernoulli) integral and is uniformly valid in a
neighborhood of the nose of the body.

Formulation of the roblem. A thin body (plane or axisymmetric) with half-*angle e < 1 at the vertex enters a fluid half-space as shown in Figure 1. In a fixed
coordinate temr the initial boundary-value problem reduces to the solution for the
potential j(x, y, t of the wave equation with the following boundary and initial
conditions: on the wetted surface of the body Onr,= v(t) sin a, where v.(t) is the
speed of the body; on the free surface x = f(y, t): Vi + V V/2= 0. The equation of thefree surface x=f(y,t) is determined by the kinematic condition f= at
x = f(y, t). The initial conditions for the potential are (0(x, y, 0) = Vt(x, y, 0) =U. -The3 pressure is connected with the potential by the Cauchy-Lagrange integral.

e- o solution a thin one,
We take the half-angle e at the vertex of the body as a small parameter in terms

of which the desired solution will be found by a series expansion.. We decompose the
zone of the perturbed flow into three regions as shown in Figure 1, the last two of which
are in a neighborhood of the points A and 0 respectively. In each of the regions, we
choose a scale Jor the independent and dependent variables. For region (1), we have
x~y.~ 1, P ~ c- (or e for plane bodies). We seek the potential p(x, y, t) in the form of
a series,

(= i" (.xyt).
3 n=O

The leading term of this expansion is determined by solving a linear problem. We take
the flow potential of the linear problem as the outer solution. For the cone with half-3 angle e, we have

Ihv

I
I
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+ ( Vo + ) t - x _- le2+(x - [(x _ 2)2+Al 1/2
wo =0.5-ev, )i I x+ (X2 +y2)1/2

t X)l )+[(x 1 )2+yA)I/ 2 +M(I +f 2 ) + [(x - 2 )2 +A 1/2  3

- e(x-,¢)+Y -/2} I
f2(M2 -1) = M2 x-_ vo t + M. [(rot _ X)2 + (I _ M2)y 1/2,

fI(M2 -I)=M2 x+vot+M. [(vot+x)2 +(I-M2)yJl/2. ,

Here vo is a constant.

k in= solution u a neizghbor-hood 9_f the vete 9 th b2&
The reg n of inhomogeneity of the outer solution jpo has the characteristic

diension - e'/l, and we thgore introducznew scales according to the formulae:
x-X(t) =xe- , Ile.y=yle-C/P, ip= p-e -I, where the artrazy motion of the
vertex of tFe body is given by a function xo(t), -(1- Passing to interior
variables, we seek the potential of the inner solution of the Laplace equation. We write
the potential of the absolute motion of the fluid as a sum of the potentials of the
transport and the relative motion Wi =vxlx+,(xl, yt). It is convenient 'n seek the I
potential t in spherical coordinates. A solution of tWe Laplace equation in spherical
coordinates f8, R, P) can be written in the following form 0(9, R, t) = V(t)R"P,(cos

Hlere Ut) is an arbitrary function of time and P3ncos e) is the Legendre function
of arbitrary (fractional) power, defined from the boundary condition on the surface of
the cone. As a result, we have a Gilbert problem with the inclined derivative, which
reduces to I

_Pa(cos e)(C coo 0 + sin e)+P'(cs 0).Ccos 0-e-e sin e) =0

where 0o = e -,0 is a small quantity. To obtain the inner solution of the problem, an
explicit representation of the Legendre function is required. The known integral
expressions and hypergeometric expansion for the Legendre functions do not enable us
to realize this possibility.

We represent the power n as a sum of an integer and a fraction (n = no + m). We
assume the quantity m to be a small parameter (clearly Iln <1 0.5) and seek a solution of I
the Legendre equation z = P. (coo 0) in the form of a power series

z=t mIzn . I
k=O I

I
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3 The terms of the series are found successively by solving the sequence of equations

(- M 2 ) z•- 2pzk +no(no+I) zk= --zk_ 2U_ (k-2)-(2no+I) U_ (k-i),

3 where U_(x) is the asymmetric identity function and p = cosO. The leading term of the
expansion is the Legendre polynomial zo = P. (p). Here we are interested in a Legendre
function with fractional power close to one. !n this case no = 1, z = P (p) =P. Asa
result, Pi +m(cos 0)=cos e+m[cos e n(1 +cos 0) +(1-1n2) cosO -1+....

Cntntion md matching -f the ie ad outer solutions,
We differentiate the expression Pl+ (cose) and use the abov boundary

condition. Noting that n = I +m and 00 = e-- ,-we obtain n = 1 + 0.5c2 In+O.5 e£4)
Substituting the expression P,(cos E) into the formula for potential, we find the3 potential pi determing explicitly the inner solution

9p+=vo(t)x1 + U(t). (x +yl)(21 +)/4 {cosY+• 2cos I1 +coI

+(1 +In2) 
cosO- 

1}+ C(t).

The arbitrary functions U(t) and C(t) are found from the conditions of matching with
the outer solution. In final form the composite solution igc is found from the formulaU

VC= Vo(x-xo)[1 + 0.5e2(2(I- M)- In 14xo(l - M)/(1 + M))]

+0.5 2 vo {(x +xo) in Ix+ o+ [(xc+o) 2+ 2 Ay 2I1

- 2xo InIp(x + (x2 + y2)1/2) I[(x + Xo)2 + 02yA 1/2

I +x(in I(I -M)/(l +M)I +2M)} + U(t) ec/2 [(x-xo)2+f2 ey2]/4

3 x.{-x+0 _52 [(x•-_o) In I(x _Xo+[(_X_.)2 +2 A 1/2)/

3 [(x- Xo)2 + #2 yA1/ 21 + (1 _ In2) (x _ xo) -[(x- xo)2 + #2 A 1/2]}.

The potential joc determines a solution suitably uniform both near and away from the
vertex of the cone. By means of the Cauchy-Legendre integral, it is not hard to
determine, in particular, the pressure at the vertex of the cone,

SCP = (p-po)/0.5 pov2 = 1 + 2e2 [1 - M +In If P(l+ M)/21 ].

Here the second term in square brackets characterizes the pressure increase as compared
with the stagnation pressure in the steady-state case. For a wedge this increment
depends linearly on the angle. The problem of subsonic flow past thin bodies is solved
analogously.

I
I
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CURVATURE EFFECTS AND STRONG VISCOUS-INVISCID INTERACTIONS

by

I A. E. P. Veldman
Department of Mathematics

University of Groningen
P.O. Box 800

9700 AV Gri
The NetherlandsI

Asymptotic theory, in particular the triple-deck theory as developed by
Stewartson and Messiter around 1970, has laid the foundation for one of the more
successful viscous-inviscid interaction methods: the quasi-simultaneous method. Triple-
deck theory describes the structure of the flow field near singular points like the trailing
edge or a point of separation. The message of this theory is three-fold.

o Near a single point, a smaller length scale in streamwise direction exists.
This scale has to be reflected in a finer distribution of grid points in a3 numerical solution method.

o The importance of the various terms in the equations of motion is indicated,
with result that in first approximation other classical shear-layer equations
are sufficient to describe the flow in the vicinity of the singular point.

e The interaction between the shear layer and the outer inviscid flow can be
described by thin airfoil theory. Furthermore there is no hierarchy between
the viscous shear layer and the outer inviscid flow: this is called strong
interaction. This has to be reflected in the interaction process for solving the3 flow equations.

The quasi-simultaneous method has been designed based on these three
messages. We will describe it here in terms of the viscous pressure distribution Pc and
the displacement thickness P. Let the external flow be described by P, = E[,6* ewere
E denotes, for example, a transonic full-potential equation), and let the shear lyer be
described by pe = B[6*J (where B represents the shear-layer equations). Then the qua-3 simultaneous iterations are given by

pcn + ) _[6(n + I)] = E[6,(n)] _

I IPin+ ) B[6*(n+1) _0.

The lack of hierarchy strongly suggests a simultaneous iterative treatment of the viscousI and inviscid flow equations. For convenience reasons only, the relevant part of the
interaction is treated simultaneously. This part is described by the interaction law
P, = I[61, where I is based on thin-airfoil theory.

"I In the current presentation, we will extend the modeling of the shear-layer
equations. The streamlines immediately behind the trailing edge are highly curved,
especially for rear-loaded airfoils. In such a situation, the assumption of constant
pressure across the shear layer is no longer acceptable. In asymptotic terms it means
that higher-order effects, in regions even smaller than the triple-deck, are becomingI
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relevant. We will demonstrate that this curvature effect again is a strong interaction
effect. This explains numerical difficulties encountered when this effect is not treated in
a simultaneous way; extensive smoothing is then required in order to obtain
convergence of the viscous-inviscid iterations.

In a simultaneous treatment of the curvature effect, no iterative difficulties I
occur. We will discuss this at length using a model problem. Thereafter we will
demonstrate this for realistic calculations: for transonic flow past an RAE 2822 airfoil
(flow cases 12, 6 and 9), a handful of quasi-simultaneous iterations (1) suffices. I

-2- -'I

= I
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3 THE SYMMETRY OF ISENTROPIC IDEAL GAS FLOWS

by

5 L. V. Ovsiannikov
Institute of Hydrodynamics

Siberian Division of Russian Academy of sciences
Novosibirsk-90
Russia, 630090

I c The classical model M of unsteady isentropic ideal (polytropic) gas flows is
considered. The system of di2erential equations descriptive of this model is subjected
to group theory analysis in order to show its possibilities for finding classes of exact
solutions.

The initial symmetry of the model M3 is to admit the full group Gg generated byStranslations along coordinate axes, rotations and two extensions added with two discrete
reflection symmetries. The goal is achieved by constructing a tree (the optimal system
with inclusions) of all non-similar subgroups of the group G8. This makes it possible to
list all non-equivalent exact submodels, namely, classes of invariant solutions described
by differential equations with a smaller number of independent variables. This number
is called the submodel's rank and may be equal to two, one, or zero. Each of the second
rank submodels is subjected to the individual group analysis to determine if additional3 invariant submodels of the rank one or zero arise.

The classes of the partially invariant irreducible solutions are listed and are also
described by the simplified differential equations. Questions concerning the
differentially-invariant solutions are discussed. The searching procedure and the
classification call for the independent group analysis are described. The peculiarities of
the appropriate gas flows are pointed out for some new exact submodels of the model3 M3.

I
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NUMERICAL SOLUTION FOR A CRISS-CROSS INTERACTION PROBLEM 3
by

M. A. Kravtsova
Central Aerohydrodynamic Institute

Zhukovsky-3, Moscow Region
Russia 140160 I

The asymptotic theory of laminar-boundary layer separation, proposed by
Neiland (1969), Stewartson and Williams (1969), and Sychev (1972), has been used to
solve a large number of problems. Two-dimensional (2D) flows with separation and
interaction between the boundary layer and external flows were mainly investigated,
but only a few publications were devoted to three-dimensional 3D) theory. A 3Dinteraction phnmnnwas first considered in an application to a h~ypersonic boundary

layer when the induced pressure gradient appears to be essential over the entire body
surface (Kozlova and Michailov, 1970; Ruban and Sychev, 1973). In subsonic and i
supersonic flows, the interaction region is local and occupies a ;jil neighborhood of the
separation point, with longitudinal extent of the order of Re-°1° where Re is Reynolds
number. To investigate 3D effects on the flow behavior in the interaction region,
Smith, Sykes and Brighton (1977) considered a Blasius 2D boundary layer encountering I
a 3D roughness on the flat-plate surface. They constructed an interaction theory for the
case w,__ the width of the roughness is of the same order of magnitude as its extent,
O(Re ). Subsequent investigations revealed that different regimes of interaction are U
possible, depending on the longitudinal and lateral scales of the roughness.

The present paper is devoted to a numerical analysis of the so-called 'criss-cross'
interaction regime proposed by Rozlko and Ruban 1987). In contrast to their
investigation, the nonlinear interaction problem with 3D boundary-layer separation is
considered. To carry out the corresponding calculations, a spectral method (Duck and
Burggraf, 1986) based on the Fast Fourier Transform (FFT) is used. 3

Let us consider a 2D boundary layer on a curved surface encountering a 3D
roughness (see Figure 1). In the neighborhood of the roughness, the triple-deck
interaction region is forming. In order to take into account the pressure variation across I
the boundar•,.ayer, we assume that the extent X, the surface roughness is
Ax = O(Re'- ) and its lateral scale is Az = O(Re - 3 ). Then the flow inside the
lower deck, the viscous sublayer, may be described by the boundary-layer equations
without a longitudinal pressure gradient,

_q + OU+ 2C U - I
OPw~aw Wa a 2W (1)W I

VU. W• .W I

• More precisely, across the middle deck of the interaction region. I
I
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If the height of the roughness is of the order of Ay = O(Re - 4/7), the equations remain
I nonlinear and the boundary conditions may be expressed in the form

U=V=W=O at Y=F(X,Z),

U=Y+A(X,Z)+..., W=D(X,Z).Y-' as Y-oo,

3 U-iY, W-4O as X-,

where the function F(XZ) is introduced to describe the shape of the roughness.

The pressure gradient is not known in advance but may be obtained via the
interaction law

)W 1008 2A(X,f) dfIp =, sin-Z A (2)

The first term in (2) is responsible for the pressure variation across the boundary layerand the second describes the pressure induced in the external inviscid flow due to thedispla ent thickness of the boundary layer.

3 TThe linearized problem for small roughness heights was considered in Rozhko,
Ruban and Timoshin (1988). To simplify the problem, Rozhko, Ruban 4T imoshin
assumed also that the extent of the roughness is much greater than Re-° . In that
case, only the first term is (2) and should be used to determine the pressure distributionover the interaction region. The present investigation is aimed at providing general asolution for (1), (2).

3 We introduce the Fourier Transform of the unknown functions according to

00 00

SU**(k, 1, Y) = - _JLdX J U(X, Y, Z)exp(-ikX-itZ)dZ.

Then the boundary-layer equations may be written in the form

d 3 f iydf~ 3d•f_ k-: d (k~R*+M;*). (3)3dY 3  dY -dY I

The boundary conditions for (3) are

Sf= 0,d 2f= i2p** at Y=0, f 0 0 =k(A**+F**).

SHere
f=kU** + W**, R =TTOU + VU R2= uW + +W

The interaction law (2) takes the form

IP** = [sign(K.) + k2A I A**.

.
I
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The solution is sought by means of the method of successive approximations vwith
the right-hand side in (3) taken from the previous iteration. The Thomas algorithm in
the Y direction combined with the FFT procedure is used to obtain the solution.Calculations were carried out for a hollow of the form

F(X,Z) = hoexp( aX 2 -,Z 2).

Figure 2 illustrates the skin friction lines for the particular hollow with h. =-5.3,
a=P=1/2.
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THE BEHAVIOR OF SELF-SIMILAR SOLUTIONS OF

BOUNDARY LAYER WITH ZERO PRESSURE GRADIENT

* by

V. N. Diesperov
Computer Centre of the Russian Academy of Sciences

Moscow, Vavilov St., 40
Russia 117333I

The present paper deals with the self-similar solutions of the boundary layer
equations with zero pressure gradient. The similarity solutions describe the flow in a
mixing layer (as well as the Blasius boundary layer), since away from the separation
point the mixing layer forms mainly under the effect of the boundary conditions and is
weakly dependent on initial conditions. The similarity function §(C(m)(where C is the
self-similar variable and m is a parameter) satisfies a well-known nonlinear differential
equation of third order

5 (m- 1) (d 2 _ d3§
S -) -d C�- d ' (1)

I C= [m/(m+ 1)]1/2 y/xl/(m+ 1), m > 0.

The equation (1) coincides with the Blasius equation at m =1.

Although three-point boundary-value problems in the classic problem of mixing
layers were posed more than half a century ago, there has been no satisfactory
investigation of the behavior of their solutions until now. The interest in self-similar
solutions has re-arisen after fundamental results obtained from free-interaction theory.
This theory provides a way of describing the structure of the flow in the vicinity of the
separation point. As a result, a number of new nonclassical problems have emerged
that are realized for values of m in (1, 2), m = oo and have to be studied to provide a
strict foundation for the obtained result. The case m = oo arises from unsteady
separation theory. All the boundary problems that describe the weak and mixing layer
flows can be associated with three different groups. It is shown that (1) is invariant in
relation to a shift transformation and a similarity transformation. It permits reduction
of (1) to a first-order equation solved with respect to the derivative. The right-hand
part of this equation equals the ratio of two second-order polynomials,

dI %2 + 7FF + 6F 2 + T + [(m + 1)/m]F
U F(2)

dt 4ýF, dF t

Equation (2) has three singular points A(0, 0), B(0,-1), C(m+l11) in a te
part of the plane (F, %) and three infinite singular points E-E'; G- z;"Q-Q'. On thei projective singe circle, these points are separated, and each of them has coordinates
E1/-5, -2/45), G(2/1-3, -3/13), Q(0,- 1), E'(-1/f5J, 2/ 4I5), G'(-2/jJT3, 3/41-3),
Q (0,1). Hitting the points A, B, E-E' of the integral curves gives the possibility of
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satisfying the boundary conditions in the boundary-value problems considered. Thus
the problem concerning behavior of the thrice-continuously-differentiable solutions
4t(C;m) of (1) changes to the investigation of the behavior of the integral curve of the
first order equation (2) and its singular points. For studying (2), the methods of
qualitative analysis advanced by Poincare, Bendixson, Frommer and Haimmov have
been applied. This has allowed research of the behavior of all the integral curves
I((;m) and, in particular, consideration of the question regarding the existence and
uniqueness of the solution of the two- and three-point problems arising in the wake and
mixing layer theory. It has also been demonstrated that (1) has no exponentially
growing solutions.

We do not consider the values of the parameter m < 0. The behavior of the
integral curves is distinguished essentially for m > 1 and 0 < m < 1 (see Figures 1, 2).
For 0 < m < 1 their picture is formed so that, in the boundary problems considered,
there are no solutions with inverse velocities. For m = 2 and the condition 4"(0) > 0, it
is established that we have the unique solution describing the Goldstein wake. It is
proven that if this condition is lacking, there is yet another sole solution with inverse
velocities satisfying all the prescribed boundary conditions. A similar situation occurs
in the problem of the mixing of two streams leaving the trailing edge of the plate with
different velocities.

Note that the Goldstein solution is depicted by the curve TE in the plane (F, it)
(see Figure 2). The Chapman solution is depicted by the curves %I and %2 (see
Figure 1). U
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3 PARAMETRIC REPRESENTATION OF EXACT SOLUTIONS

OF THE TRANSONIC EQUATIONS

3 by
I. A. Cherov

Saratov State University
Saratov

Russia 410009

U Some possibilities for parametric representation of exact solutions of the
transonic equations of a perfect gas, in the plane and axisymmetric cases, are
investigated. Both the functions and the independent variables are considered as
rational functions of a first parameter, with coefficients dependent on a second
parameter. The system of ordinary differential equations for the coefficients is deduced
from the transonic equations and is superdeterminate in general The method is used
for finding a number of singular solutions in the axisymmetric case. The main points of
the method are the following: (i) the consideration of the solution in the plane case
using the hodograph plane; (ii) the representation of this solution in parametric form;
and (iii) the construction of an axisymmetric analogue. Finally, the analogues are found
for the flows over the Guderley profile (the flow over a finite body with a sonic flow at
infinity) and the Tomotika-Tamada profile (with local supersonic zones).

I The connection of this method with the technique used in the analysis of groups
of the differential equation is also discussed.

I 1. Transonic flows of an ideal gas in the plane (w=0) and axisymmetric (w- =1) cases

are described by the Khrman equations

I u.u=v +&4, uY=vz. (1.1)

Let us consider the class of particular solutions of (1.1) in the form

y = t, u = u0 +u 2 (s)t 2, v = v1 (s)t +v3(s)t 3, x = x0(s) +x 2 (s)t 2 , (1.2)

where sand tare parameters. For the coefficients uou 2 ,vv x0 ,X 2 ,the system of
ordinary differential equations (ODEs) turns out to be, frm (1.2J,

4=u 2 -43j, ua=(1+w)v3-4x2u2, v3' =2(uj-(1+w)x2v3 ),
S(1.3)

x.4=u0 , u;=(l+w)vl, vj=2(uOu2 -(1+w)x 2vl).

= Three equations for x,., Lv form an independent nonlinear subsystem; this is the
nonlinear kernel of (1j ).It has been studied in the theory of similar transonic flows ofthe form

u=y 2(n - 2 ) U(f), v=y3 (n- 1) V(ý), = xy-n (1.4)

with n = 2. The other solutions are expressed through u2 (x2 ), v&(x2) in the form of
integrals.

The general solution of (1.3) contains five constants. Choosing them, one canI
I
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obtain a number of interesting solutions which are relevant to aerodynamics, as follows.

a) Meyer similar flow in a Laval nozzle:

C12Y2  C21 C3 w (1.5)u=Cix+2(+,) V= X: +2(+1 Y3.(15
2(1+w)' +

b) Taylor nozzle flow with local supersonic zones (w = 0):

C1(1-C 2s 2 ). 2 CI(2+C 2 s3) C3]

(1.6)
x= 282 4 42 1

1+2COs -I Y2.

It is easy to obtain the axisymmetric analogue of (1.6). I

c) Similar Frankl flow (n = 4/5) and the Guderley-Yoshihara flow (n = 4/7) (which
apply far from the profile shape and the body of revolution for MOO = 1):

w=O: u= -2Cls-+s 6 y 2 , v=y[2lS-4- s-y2],

x= -ClS 2 +s- 3y 2. (1.7)

w=1: u= -4Cls-S+ 2- 9Oy2, v{4C1s-8-4 3- 15y 2], 3
x= -3C8s2 +s-5y2. (1.8)

d) Vaglio-Laurin flow and its axisymmetric analog (flow over a corner point):

w=O: u= -5Cls 2 +s-6y2, v=y[-10CS- 1 -2 s-ay2] I
x= -Cs 5 +s 3y2 (1.9) 3

w =1: u= -42C 1 s2+ 2s1-Oy2, v -28Cs-3-• s 15y2], I

x= -9CIs7 +s-5y2. (1.10) 3
I
i
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2. The possibility of linearization of (I.1) exist for w =0, by the hodograph method.
The solution of (1.3) is represented as

x = x(u, V, Cr), y = y(u, v, Cx), x=I,...,5 (2.1)

The class of solutions of (1.1) associated with (2.1) may be considered. Let us introduce
the operators of differentiation by,

8 = usa/8t - uO/ssI = -
(2.2)

(vcu -ucvg)o/Ds+ (ucvs-uuvc))/^t-c =W+ u.,,-ug,,,7

where C is one of Cr.(w = 1,...,5). If (x,y) is a solution of the hodograph equations, then
(O-X/Ov, Dy/ODV), (oax/C, &y/DC) are solutions also. The parametric form

x = x(s, t, CO), y = y(, t, CO), u =U(s, t, CO), v = v(S, t, C,) (2.3)

is assumed in the calculation of the right-hand sides of (2.2). The corresponding
integration should be considered together with the differentiation in (2.2).

3. To obtain the flow over the Guderly profile, the solution (1.5) with w =0 in

parametric form should be written

I u=Bs+B A t2, v=BAst+B Rt3, x=s, y=t. (3.1)

Using (2.2), it can be shown that

B6 (s+Bt2 )2 = 2x/v2 = B( + yt2) = 1/v2-= 2B6t K= B3s _ B4 t2.

K 3  y 2 --y/- -, K3 B 2 (3.2)

The sum total (x 2 ,y,) from (3.2) together with u, v from (3.11 determiel the Franki
solution (1.7). Infai, introducing the new parameters z = - , tI = 2B1 z, instead of
(s, t), one can derive this solution in the same form (z = s, tI = t are assigned again).

The flow over the Guderley profile is described with the help of a linear
combination (x, y) from (3.1) and (x2, Y2) from (3.2) for identical (u, v),

u= 1  (2 C , [1 2 C32 I 2]

+ (23+ ) (2V3 +c() 2

COO +C 2 ) f[ 3 & C2) (3.3)

I = Cl(C2 -4s 3 ) + C2 -s3

2(2s3 + C2 )2  C•s

Thus it has been shown that the flow over the Guderley profile is described by a
solution of the form (1.2). It is easy to construct the axisymmetric analogue by solving
(1.3) for w = 1.
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4. Tomotika and Tamada demonstrated the crossover from the solution (1.6) to the
singular one (like a transonic dipole). It describes the far flow over a profile with
supercritical speed at infinity. It can be written in parametric form,

u=uO+u 2 t2, v=vlt+v3 t3, x=X+x2t2 = t (4.1)z0 +t2 ' y=--

with 27CiC2s3 _ 2 27CiC2s3+2 2s3

"uo 18C1S2  u2=2' v1= 18Cjs . v3=-T3- (4.2)
27CC 2s3 + 2 729CC~s6 + 108C3C2s3 + 4

o 36Cjs3 (= o 216Cis4  3
Substituting (4.1) in (1.1), one can obtain a system of ODEs for the seven coefficients
"uu!2, V1 , v3, x:n, x2, zo which are homogeneous and linear according to the derivatives
of the coeffiaents. -The condition of compatibility of this system is its determinant is
zero.

A(u0 , u2, v1 , v3, x0, x2, z0 ) =0. (4.3)

It is easy to show if the initial couditions of the Cauchy problem for the system of
ODEs are satisfied by (4.3), then they are also at every step of the integration (the
property of involution). One of the seven equations may be discarded. So the solution
(4.2) can be generalized for w =0 (introducing new constants) and one can construct the
axisymmetric analogue.

The Tomotika-Tamada profile is described by a linear combination of (4.2) and
(1.6) in the hodograph plane. It gives the parametric form

u=u0 +u 2t2 , v-vt+ v3 t3 , x = xO + x2t2 + x4t 4  t + y3t3
zo +t2 ,y= . (4.).

z0 +t z0 +t 2

A substitution of (4.4) into (1.1) gives overdeterminate systems of ODEs. One
may study them by analogy with the ones mentioned above. 3

I
I
I
I
I
I
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THREE-DIMENSIONAL LAMINAR BOUNDARY-LAYER ON A FINITE-

DELTA WING IN VISCOUS INTERACTION WITH HYPERSONIC FLOW

by

G. N. Dudin
Central Aerohydrodynamic Institute (TsAGI)

Zhukovsky-3, Moscow Region
Russia 140160

In hypersonic flow over thin delta wings, boundary-layer flow patterp depepd
essentially on the magnitude of the hypersonic interaction parameter X = M;OReo-
where M. is the incoming flow Mach number, Re = pooUoL/po is the Reynolds
number defined in terms of the free stream gas density and velocity, the wing length
and the viscosity coefficient at the stagnation temperature. For X Ž0(1), moderate or
strong interactions are realized. In this case a pressure gradient, induced m the external
inviscid flow by the boundary-layer _dipl ent thickness, influences the boundary
layer to leading order, and upstream disturbances can take place over the whole body
length (Neiland, 1970). The problem of flow over a semi-infinite delta wing in a strong
viscous interaction (X > 1) admits reduction of the boundary-value problem to a self-
similar one, for which methods developed for the two-dimensional problem (Kozlova
and Mikhailov, 1970; Dudin, 1978) are applicable. However, when considering moderate
interactions for flow over a delta wing (x=0(1)), the system of equations for the

boundary layer remains three-dimensional and the method presented, for example, in
Dudin (1983) must be used to obtain the solution.

I This paper considers hypersonic viscous gas flow over a plane finite delta wing at
zero angle of attack with constant surface temperature, and a specified pressure on the
wing trailing edge. The hypersonic interaction parameter has X > 0(1) and body surface
is not cold. According to common assessments for the hypersonic boundary layer at
X ?! 0(1), dimensionless coordinates and asymptotic representation for the flow functions
are introduced. Substitution of these variableI i-to the equations and execution of
limiting transition Mo-+oo, Reo--oo at X s MV 2: 0>_O1) result in three-dimensional
boundary layer equations, where r is characteristic imensionless thickness of the
boundary layer. It should be noted that the external edge of the wing boundary layer in
hypersonic flow has been defined exatly in the first approximation as the shock layer
where the gas density is a factor of greater (in order of magnitude) than that of the
boundary layer. To solve the system of equations for the boundary-layer pressure
distribution, it is important to note that the pressure is not specified and is evaluated
using interaction concepts; the external inviscid flow equations are obtained using
hypersonic small-disturbance theory. The present paper considers flow over a delta
wing with aspect ratio of S-= 0(1). Thus strip theory is valid for the external inviscid
flow with an accuracy of O(•/lS). An approximate tangential wedge formulae can be

used to define the pressure and in dimsinless variables has the form

p = _..I + a + 1 2 +'6e 0 + 1 0 ,e 1/

0 0
I_
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where X. = Moor and x, = xS11 2. To find the unique for the boundary-value problem,
it is necessary to specify the pressure distribution along the trailing edge of the wing.

In the vicinity of the top of the delta wing and near the leading edges, the
hypersonic interaction p Famet is calculated from the length of the region considered
and is equal to Xx = M2 1; thus a strong viscous interaction is realized over
these regions. To account for this, new variables, including the features of flow function
behavior in these regions (Dudin, 1983), are introduced for the vicinity of the delta wing
top and leading-edges. A system of equations describing a three-dimensional boundary
layer on a plane delta wing with given pressure distribution Pk(Z) at the wing trailing
edge in a viscous interaction region is obtained by the transformations. The terms of
the system of equations containing the longitudinal coordinate x drop out on the top of I
the delta wing top, and the boundary value problem is found to be dependent solely
upon two independent variables, with the system obtained also describing flow over a
semi-infinite plane delta wing in the strong interaction regime (Dudin, 1978). The
system reduces to one involving the usual differential equations at the leading edges of
the wing at the quantities Z = k 1. To solve the boundary value problem, it is
necessary first to solve the equations at the leading edges; these solutions are used as
boundary conditions to solve the equations that depend on two variables on th etop of I
the wing. Finally, the system of equations for the three-dimensional boundary layer is
solved including specified boundary conditions at wing trailing edges Pk(Z), and the
solution obtained for the top of the wing and the leading edges.

To solve the equations, a finite-difference method is used that has been described
by Dudin (1983). Derivatives in x- and z- coordinates are approximated with regard to
the sign of their coefficients. Systems or difference equations for the u, w and g- I
functions are solved by the method of scalar sweep. To account for the disturbances

being transmitted upstream to approximate pressure gradient through the longitudinal
coordinate at x > 0, central differences are used. At the last layer where x = 1, the
pressure gradient is not known and is selected in the solution of total boundary-value
problem from the condition that the pressure distribution on the trailing edge obtained
as a result of calculations is equal to a specified distribution. As an example, a flow
over a plane delta wing is considered with the pressure at the trailing edge identified I
with a flow over semi-infinite delta wing in strong viscous interaction at x = 1. Thus
Pk(Z) was taken to be equal to the magnitude of the pressure obtained by solving the
system of equations, describing delta wing top flow at x = 0. It was suggested that the
numerical calculations s =-1 (the sweep angle was equal to 45), -y = 1.4, a -0.71,
gw = 0.05, 0.1, 0.2 and X. = 1, 2, 5, 102, 105.

Figure 1 presents calculated results for dimensionless pressure values P (solid
lines) and coefficients of the skin friction in the longitudinal direction Tw = (u/Oy).
(the dashed lines) along x-axis in the plane of symmetry Z = 0 at g,. = 0.05 and the
interaction parameter X. = 1, 2, oo to which t.he curves 1 to 3 correspond.

Figure 2 presents the pressure distribution P (solid lines) and boundary layer
displacement thickness 6e (dashed lines) along the wing span at the longitudinal
coordinate value x = 0.5. Dotted and dashed lines denote the specified pressure
distribution Pk(Z) on the trailing edge. It should be noted an essential change of
boundary layer characteristics occurs depending on magnitude of the X. parameter. For
this case and also in strong interaction re " me (Dudin, 1983), the trailing edge effect is
extended upstream by approximately 30o to 40% of the wing chord. An essential
decrease in the pressure P in the vicinity of x = 1 at X. = 1 leads to flow acceleration in
the longitudinal direction and an increasing skin friction coefficient 7-. The heat flux is
changed in a similar way. It should be noted that the boundary layer displacement I
thickness decreases, essentially transferring from a strong viscous interaction to a
moderate one. As a result, the pressure gradient over the wing span decreases except in

I
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I the vicinity of the symmetry plane. In all cases considered, smooth convergence of the
flow to the wing symmetry plane was realized. Flow characteristic calculations at the
parameter X. = 2 and gw = 0.1, 0.2 (curves 5, 5, respectively) show that an increase in
temperature coefficient significantly affects the flow parameters. Total aerodynamic
characteristics as a function of interaction parameter magnitude were calculated. It has
been shown that significant increase of these characteristics (by a factor of 1.6 to 1.8)
occurs with a decrease of the parameter from 5 to 1 when flows with X. > 10 are
considered; the aerodynamic characteristics are not changed and coincide in practice
with those corresponding to a strong viscous interaction.I
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THREE-DIMENSIONAL BREAKAWAY MODEL

OF A FREE-STREAMLINE TYPE

* by

Gregory Vylensky
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The three-dimensional high-Reynolds-number laminar incompressible breakaway
of a free streamline from a smooth surface is considered. The free-streamline model
adopted in the inviscid flow region assumes that the flow potential satisfies Laplace's
equation, the condition of zero normal velocity on the body surface and a condition of
constant pressure on the free streamline downstream of the breakaway. The shape of
the free streamline is fixed by the condition which requires that the tangent to the free
streamline be parallel to the local velocity. The model also postulates that the velocity
vector be continuous at the breakaway point. Since the analysis is confined to the
vicinity of the breakaway point, the conditions at the infinity of the fluid are not
considered.

As the leading term in the velocity expansion at breakaway is constant and equal
to the velocity at the free streamline, a linerized version of the above problem applies
to the second order solution in the neighborhood of the breakaway point. In order to
solve this problem, we make use of Maz'ya-Plamenevsky's (1978) procedure and
Kondrat'ev's theorem (1967), which establish that the solution may be expanded in the

I form of a series o local eigenfunctions and adjoint eigenfunctions. The mhomogeneous
and non-linear terms contribute to the third- and fourth-order solutions. Hence, the
tangential, the transverse, and the normal velocities at breakaway are

u = 1 + bp11 2 sin (0/2)- Xzy-5 b2x + Alz + 0(r 3/ 2 ),

w w=bp1/2 cos (ý/2) - Xf~y +5§ b2z + AlX -A2z + 0(r3/2),

IV Xx- XZz + A2y + 0(r3/2),

I where p=(x2+z2)11/ 2, tan(O)=z/x, 0<D0 ir 2n2 he body near the
breakaway point 0 occupies the surface y = -Xzx-Xz /2+o(pz). The x-
axis of the Cartesian co-ordinates (x, y, z) is aligned with the flow at 0. The lengths x,
y, z and the corresponding velocity components u, v, w are non-dim•nionalized with
respect to a typical body *iension and the free-stream velocity Uo0 respectively. The
pressure is written as pp0 U. + p.o, where p0 is the fluid density and poo is the pressure
on the free streamline.

The most striking feature of the above solution is that, in general, two free
streamlines stem from the breakaway point (according to either upper or lower choice of
signs in the formulae below):

z= 2-bx3/2+A, 2'+O(x5I/2), y= 3C.X2 -- F-zAbx5/2+O(x3).

TI 1
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Here A and A2 are arbitrary constants dependent on the overall flow properties. The
constanI b is aL not known in advance. However, when b < 0, the pressure gradient is I
infinitely favorable and, since the boundary layer must remain attached at 0, this case
is irrelevant to the phenomenon of breakaway. When b > 0, the pressure gradient is
infinitely adverse and the boundary layer would have separated upstream of 0. So, the
case b = 0 appears to be the most physically realistic one.

In order to obtain a self-consistent account of the three-dimensional viscous
separation involved here, we follow the approach adopted by Sychev (1972) for the two-
dimensioral problem and set 0 <_b = 2c (Re) with c > 0 and e(e+)--0-+0. The
structure of the flow at the breakaway ten takes on the form of smooth separation at
Re =- o; the adjustment of the viscous flow near separation is accomplished by means of
the triple deck. In spite of obvious differences between the solution (1), (2) andthe
Kirchhoff model, the parallel arguments leat us to the conclusion that e = Re
The streamwise extent of the tri le-deck is 0(e 6), whereas the normal thicknesses of the
decks are respectively 0(e ,0), 0 , 0(eC). The flow is then governed by the lower-deck
properties where the usual triple-deck equations apply:

S+ =`+ = nu

Th W o d Wr diow e i2w

au* Oz, Dy

I(u/Ox*, =pw) ,O , oz) dxdz 0
"21 R iJ(x-x* 2 +(Z-z)

The boundary conditions are3

to satisfy the no-slip condition at the body surface and m

u(y& -oo) = ay,, w,(y,--Ko) = coy, I
82v*,/O 2 x,(y,-ioo) = (a0 O/ox, + o8/O,2)Da VOO/OX. y,

and as p,-+o

u, = a0y, + pV6 fy*/PV 3 ), W*=coy*+ p/ 6 hc(y,/pl/ 3), I
(/pDx*,, Op/Oz,) -clP. 11'2(sin(0/2), cos(0/1)) 3

to match with the main deck and the surrounding flow. Here p, = pl/6, y, = y/6 10a0' co i

I
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3 are constants and f, hk are the correspondent solutions in the surrounding boundary
layer.

Hence there is no formal difficulty about setting up the self-consistent procedure
which accounts for the structure of the proposed three-dimensional breakaway model
(1), (2), provided that the above system is solvable for cl > 0. We conclude then that
apart from the classical breakaway model based on KirZhoff's solution (which in the
three-dimensional case would imply the presence of a freestream surface stemming from
a line of separation) the three-dimensional breakaway scenario can also be based on a
free-streamline model (1), (2). The latter is characterized by the breakaway of a free
streamline (2) at one point of the body surface, which is fixed by the condition of
"smooth separation" b=0.

I
I
I
I

I
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WITH STRONG WALL COOLING: SUBCRITICAL REGIME

by
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This paper is concerned with separation phenomenon that occur in a hypersonic
flow past a curved wall which is cooled. An interactive boundary layer app•oarhJIed
within the weak global interaction regime, where the parameter X - MooRe is
much smaller than unity. As established by Neiland (1973), in this case the induced
pressure obeys the interaction law

P=si (L) + N-10 +d (1)

where X is the scaled streamwise variable in the interaction region, 0 is the slope of the 3
streamlines at the outer edge of viscous sublayer, F is the scaled form of the body
surface,

L=- (M-21) dY, (2)"0 1
M being the Mach number distribution aqoss tte..boundary layer. Here a curved
surface having a shape defined by F =9 + X2 + 1), corresponding to a smooth
compression ramp, will be addressed. If L < , the character of interaction is analogous
to a flow with a supersonic mainstream, while for L > 0, the nature of the interaction is
similar to that with a subsonic mainstream. The case L < 0 has been studied by
Kerimbekov, Ruban and Walker (1992) and this study paper is concerned with regime
L>0.

The parameter N is proportional to the ratio of displacement thickness variation
in the main part of the boundary layer to the thickness of a viscous sublayer
immediately adjacent to the surface. For certain ranges of the Mach number, Reynolds I
number, and the wall temperature, the parameter N becomes large with respect to
unity; thus the main part of the boundary layer gives the dominant contribution to
displacement thickness. In this situation a classical approach may be used to consider I
the evolution of the viscous lower deck (i.e. the sublayer). This approach remains valid
until 9 is smaller than some critical value 09. At 0 = c the flow is in the forward
direction everywhere, but the skin friction vanishes linearly at a single point denoted by I
X.. This behavior of the skin friction at 0 = 9€ leads to the emergence of an inner
interaction r in the vicinity of X, having a streamwise scaling
IX-XsI=O(N-I ). Marginal separation theory (Ruban, 1982; Stewartson, Smith,
and Kaups, 1982) may be applied to describe the interaction in this region. According I
to this theory, the stream function in the lower deck of inner interaction region can be
expressed in the form

0b=1N- 1/2 X ly3 + rlN-I AlY2A(x) +..+ N -3/2,i +. , (3) I

(3)
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3 where y and x are appropriate scaled transverse and streamwise variables respectively,
AX1 is related to the value of the pressure gradient at X = X. and 0-=--c, and A(x) is
proportional to both the skin friction and the boundary layer displacement thickness. It
is shown that a solution to the problem for I exists provided A(x) satisfies a solvabilitycondition

I A2(x)-x2+2a=-J A()+I d, (4)
I where a is proportional to the scaled departure of the 9 from its critical value 9c.

Numerical solutions of the integro-differential ofundamental equation (4) for A(x) are

obtained. Calculated results and an analytical solution calculated for the limiting
process a-40 - show that marginal separation theory becomes invalid in the
neighborhood of the reattachment point for small enough a. Since the coordinate of the
reattachment point xr tends to infinity as a approaches zero through negative values,
Srecon. eration of the reattachment problem becomes necessary when xr is proportional
to Nrcn. Formulation of the2 p roblem for nonlinear reattachment region having a
streamwise scaling Ax = O(N- ) is reduced to the consideration of the nature of the
solution in the lower deck. The governing parameter for this problem is P, which isI defined by

xr = PN 1/3, (5)

for large values of xr. Numerical solutions of the problem for .8 < 1.225 indicates that a
reversed-flow singularity is encountered in the interacting-boundary-layer problem
under consideration, with the critical value of P being nearly 1.23. This type of
singularity seems to be predicted by Smith (1988) as a local breakdown of any
interactive boundary-layer solution at a finite value of the controlling parameter.
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NONLINEAR INSTABILITY OF SUPERSONIC I
VORTEX SHEETS AND SHEAR LAYERS

by I
A. F. Messiter
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USA I

According to the linear theory, a vortex sheet in supersonic flow is neutrally
stable if the Mach number is large enough, whereas a thin shear layer can be unstable I
to small disturbances, with growth rate approaching zero in the long-wave limit. In this
sense, the shear layer approaches a vortex sheet in the limit of vanishing thickness. A
corresponding consistency has not yet been demonstrated for the slow nonlinear
response to small disturbances. For a vortex sheet, Artola and Majda (1987) have
demonstrated weakly nonlinear instability, in the context of resonant response to a
sound wave at oblique incidence. A steepening of compression waves outside the sheet I
leads to distortion of the shape of the sheet, such that comers develop with a weak
shock wave on one side and a weak centered expansion on the other. A long-wave limit
for thin shear layers has been considered by Balsa (1991, 1993), such that the ratio of
shear-layer thickness to disturbance wavelength is small, and the ratio of disturbance
amplitude to shear-layer thickness is likewise small, the two ratios being of the same
order of magnitude. Viscous effects and nonlinearity enter the equations for the critical
layer, but nonlinear effects do not influence the external flow at this stage, so the I
solution obtained in this limit does not appear capable of approaching the vortex-sheet
solution if the thickness is decreased still further.

It appears that another limit must be considered, where the disturbance
amplitude and shear-layer thickness are of the same order of magnitude. The small
parameter is then the ratio of one of these lengths to the disturbance wavelength. This
limit is considered here, again with viscosity chosen to balance nonlinearity in a suitable I
sense. The coordinate system is chosen to move at one of the speeds found for linear
neutral disturbances to a vortex sheet, so that the flow is nearly steady. In the external
flow, a periodic initial disturbance is prescribed, with a finiteness requirement in the
second approximation giving results equivalent to those of Artola and Majda. Shock
waves initially are present only at large distances, and move either toward or away from
the shear layer as the mean surface becomes increasingly distorted. Perturbations in
most of the shear layer are described by a slightly modified version of Balsa's I
derivation. The equivalent second-order surface, with shear layer displacement effects
taken into account, is now different when viewed from above or below, and matching
with the external flow is modified. The velocity jump found at the critical layer is I
required to agree with that obtained from a critical-layer solution. The critical layer in
this limit can be characterized as an equilibrium inviscid critical layer, somewhat like
that described by Goldstein and Hultgren (1988) for an incompressible shear layer. In
the present case, in a first approximation, the temperature in the critical layer is
constant along a streamline, and the vorticity changes because of a baroclinic forcing.
The dependence on a stream function is found from a solvability condition for a later
approximation, somewhat like that of Goldstein and Hultgren. Suitable asymptotic I
matching of solutions in the three regions then leads to a description of the slow
increase "n mean-surface distortion. As the ratio of amplitude to thickness increases or
decreases, the results approach those for a vortex sheet match with a later stage of
Bals's long-wave formulation.

I
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One of the main problems in the calculation of separated flow near a smooth

body at high Reynolds numbers is determinating separation line location. This problem
may be solved either by using empirical data or by carrying out an interactive
procedure using a composite solution of the equations describing inviscid global
separated flow and boundary layer equations near smooth surface (Gaifullin and
Zakharov, 1990). Zakharov (1976) determined a family of inviscid solutions for
symmetric separated flow near a slender circular cone at fixed incidence. The purpose

of this paper is to demonstrate how to select the single solution from this family for
each Reynolds number and hence determine the calculation of separation line location
on the cone.

It follows from Laplace equation that the adverse pressure gradient upstream of
separation is infinite along the inviscid separation line (i.e. "he vortex sheet shedding
line). This is not the case when smooth condition is valid on iuviscid separation line:
the curvature of vortex sheet on shedding line is finite and s equal to that of body3surface.

Consider a symmetric fluid flow with Uoo over circular cone with semi-apex
9 < 1 with an angle of incidence a - 0. Under these assumptions slender body theory is
valid. The case of circular cone is a self-similar involving separated flow over a cirde
that is expanding with constant rate. When separation from a slender cone takes place,
the disturbed flow is conical to a first approximation (except in the vicinity of the apex
and bottom), and this is confirmed by the straightness of the primary separation lines.

A simplified mathematical model is used in this paper to describe flow separation
over the cone, with two symmetric vortex sheets shedding from the primary separationI lines. The inviscid method involves introducing vortex sheet which is asymptotic in the
vicinity of separation lines. For the vortex sheet core the well-known model "vortex-
feeding cut" is used. Continuous vortex sheets are simulated by large numbers (usually
40 and more) of discrete vortices. At distances less than discretization step, vortex
panels are used to calculate the induced velocities. In the symmetric case corresponding
to the plane self-similar problem, there is the only main parameter, namely the relative

value of incidence a = a/O.

Let us confine ourselves to laminar boundary layer separation from the cone.
For the boundary layer problem, an orthogonal curvilinear co-ordinate system was
adopted in which the cone surface is denoted by C= 0; here C is the distance normal to
the surface, e is the distance along the cone generators from the apex, and q is the angle
between any generator of the cone and the lowest generator, measured in the cross-
plane. The boundary-layer equations for incompressible flow in this system are

a _Ou auw0uw 2  82u (1)uI+ V-- + y -T si = A02
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0 (2) 3
u!7 VOW-" " + - m w + j6 -1

W+- Yw r - P 9,w (3) 3
X(ur) ay I

- + r + = 0, (4)

where r(t) is the radius measured in the cross-plane of the cone, (111 v. w) are the
velocity components in the (t, C, 71) directions, p is the pressure and p is the density.
The boundary conditions are

u=v=w = 0 when C=O (5) 1
U = Ue(17), w = W,(,I) when C = 8(1() (6) 1

where 8(qj) is the boundary layer thickness.

It is po•]•le to find solutions in the which the velocity components are functions
of A = C(ue/tv) and r only according to

u = Ue()i)E(i.i) A

W = We(r)G(%,A)

v = (U')U1/2 (V(.,X) + e AE- Au , uG) I

Under the assumptions of slender body theory, it can be shown that equations (1) - (4) 3
reduce to

-^2 += V-+BG -E (7)
CIA 2  aA W

Dx G V 2+c(G-1) +EG-1+BGA (8)

-F A 2 0  (8)Dyi

where B(q)= we()/(Uooine), C(q) = W.c(q)/(UOsin8). The boundary conditions now
become 3

E=V=G=0 when A=0 (10)

B--*l, G-4l when A-400. (11) 1

The system of equations (7) - (11) was solved numerically using finite-difference
relations which are second order accurate. In the numerical solution the flow region i

I
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-- from q = 0 to V7 =r was divided on three parts as follows:

(a) From V, -0 to the point of boundary-layer separation at rl = il and from Yj = il toI any point 7/= =2.

Here we think of boundary-layer separation line as a line on which the normal
skin friction component is equal to zero. The region (ill, V2) must be greater
than the length of interaction. The governing equations m this region are
equations (7)- (9) if G(A)Ž>0 and

eE= vaE

02G_-Va9+EG-1-C
'X2-aVA

WA_ 2

if G(A) <0. The strength of source in region (0, 172) is

q(h) = 2 V(e7 / when A--oo. (12)

(b) From the point 17= Y12 to any point T1= T13.

The governing equations in this region are,$gcvisid. The region (172, 113) is small
and equation of vortex sheet here is C = ka"IN, where a = r(€/- ro) is the distance

along the cone from the vortex sheet separation point. The vortex sheet in this
region was represented by a source with strength

q(1) =•3 ka2/3 12 5 17_ T1 3  (13)

and sink A a3/ 2 (173 ) at the point q = 173. Here -y is the vortex sheet strength.

i (c) From point q = 173 to 17 =.

Th.lt governing equations in this region are inviscid. The velocity in the 1q
direction may be expressed in the form

We(ii) = Weo(i7 ) + Weq(7i) (14)

where We(i/) is the velocity induced by the sources (12), and W.o(11 ) is a function of
Uoo, Vo, 12" Iterations must be used to obtain the solution for velocity profiles,
boundary velocity We(11), strength of sources q(y)), and the vortex sheet separation point
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",. The iteration process is repeated until the source strength (12) and source strength 3

) is equal at the point 112.

The last formula (14) is formally identical to the Veldman's formula (Veldman,
1981), but in this work W,.o is not constant in the iteration process, because is 1
unknown. Figure 1 shows the strength of sources derived from equations (12) and (13).
Figure 2 gives comparison between the present solutions and results of Smith (1982).

References

Gaifullin, A. M. and Zakharov, S. B. 1990 "The Method of Separated Flow I
Calculation on Circular Cone with Effect of Viscous-Inviscid Interaction", Uchenye
Zapiski TsA GI XXI, 6.

Smith, J. H. B. 1982 "Achievemnents and Problems in Modeling Highly-Swept Flow
Separations", Numerical Methods in Aeronautical Fluid Dynamics, Academic Press,
431-467.

Veldman, A. E. P. 1981 -New, Quasi-Simultaneous Method to Calculate Interacting
Boundary Layers", AIAA J., 9:1. i
Zakharov, S. B. 1976 "The Calculation of Inviscid Separated Flow about a Slender
Cone with Large Angles of Attack", Uchenye Zapiske Tsagi VII, 6, also RAE Library
Translation 2009 (1979). 1

I
I
I
I
I
a
a
S
I
3



1 69

I

iqI i yZ=3

0.2 e2-:t.2 .10j

equation (12)
0.3

"1 /equation (13)

10.0 ~s ] G ý 2 o1 o ~

Figure 1



70 1,o I
I
I

120 --.

x I

90- 1

I
Present result

TrIple-deck resuLt (Fiddes) 3
SMooth separation

30. FAttached fLow (Cooke) I
x ExperiMent (Rainbird) i

0 I2

Figure 2 3
I
I
I
3



UNSTEADY HYPERSONIC THIN SHOCK LAYERS 71

AND FLOW STABILITY

by
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Rockwell International Science Center

Thousand, Oaks, California 91306
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An asymptotic theory of unsteady shock layers has been developed. This
formulation is a generalization of the steady case treated by Cole (1957). Major aspects
of the analysis are the use of a "Newtonian" distinguished limit embedded within
Hypersonic Small Disturbance Theory (HSDT) (Van Dyke, 1954). IF Mw is the
freestreain Mach number and 4 iq a characteristic flow deflection, then a hypersonic
similarity parameter H 1/Mgo66 governs the HSDT flow which occurs in the
distin•,;hed limit 6-,0, H fixed. To keep the flow in view in the HSDT limit, a
strained version of the transverse coordinate Y to the flow y, where R- y/8 is used. If
the characteristic time is of the same order as the freestream convection speed, then the
convective operators can be readily generalized from steady to unsteady flow, by theaddition of a a/at term in the HSDT approximation of the substantial derivatives.

Treatment of thin shock layers then proceeds analogous to the procedure given in ColeI (1957) involving the use of coordinates measured from the body surface, as well as the
transverse velocity v measured from its value on the body. If 7 is the specific heat
ratio, a Newtonian limit defined in terms of the Newtonian similarity parameter
N-H/A, where A- 7 -1/y+ 1, is used to study high Mach number flows as the shock
approaches the body. The distinguished limit involves A-.0 for N and y* fixed where
y*- (-Xo)/ as a "boundary layer" coordinate used to preserve the fine structure
Sof the shg )layer as y-"1. Substitution of the unsteady HSDT and NewtonianI asymptotic expansions of the density, transverse velocity and pressure into the Euler
equations gives initial-boundary value problems for the approximate flow quantities
subject to shock conditions on a free boundary corresponding to a bow shock wave asI well as a body flow tangency condition. If x and t are the streamwise coordinate and
time respectively, introduction of characteristic coordinates =x+ t/2 and vq=x-t/2
facilitates the unsteady Von Mises transformation (x,y,t)--*(•,ij, k). Integration of the
energy equation in unsteady Von Mises variables shows that the entropy convects at
constant speed downstream on the streamlines of the flow. Solution of the equations
gives an unsteady generalization of the Newton-Busemann law and the complete flow
field between the body and its shock. The generalized form gives the pressure
distribution over a body whose shape changes with time. A major thrust is to use the
Newtonian solution to study the spatial stability of finite disturbances occurring in
strong interaction between a hypersonic boundary layer and shock layer. Similarity
solutions relevant to this interaction and matching issues are discussed in relation to the
study of small amplitude inviscid fluctuations (Malmuth, 1992).
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WAVE RESISTANCE OF A SUBMERGED BODY

MOVING WITH AN OSCILLATING VELOCITY

by3
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Russia 199178 3
There are numerous papers treating stationary waves due to the forward motion

of a body (see, for exam=le, Wehausen, 1973, and Baar and Price, 1988, and the
bibliography cited ther Non-stationary ship waves are investigated to a lesser
degree (see Sretenskiy, 1977, and Newman, 1978). The situation is opposite from the
mathematical point of view. Some solvability and uniqueness theorems are proved for
different formulations of the linear initial value problem describing forward motion of a
submerged body (see Garipov, 1967, and Hamdache, 1984).

In this work the effect of high-frequency oscillations of forward velocity on the 3
wave-making resistance is considered. Let a body be submerged in an incompressible
inviscid heavy fluid which, for simplicity, is of infinite depth. Let its dime-sonless
velocity have the form U(t/e) where U(r) is a positive differentiable function having I
the unit period and t is the dimensionless time. Only dimensionless quantities will be
used in the pa, It means that t is obtained by dividing the dimensional time by, for
example, (L/g); , where g is the acceleration of gravity and L is the characteristic
!M In the same manner U is obtained by dividing the dimensional velocity by I
(Lg)AI&. If e4<1, thM the velocity oscillates at the frequency, which is high in
comparison with (g/L) In this case singular perturbation methods are applicable.

Our aim is to derive the asymptotic formula for the wave-making resistance
R(t, r) of the body, r = t/c. Then we shall compare the mean value

<R>= JRd-

with the wave-making resistance Ro(t) of the same body moving with the mean velocity I
<U>. Numerical computations for the 2D problem show that there exist cylinders such
that I<R>I < IRkI (up to a term 0 (e)). 1
Formulation and Solution

Let a solid body occupy the domain D C R 3-= x,y, z): y < 0, (x, z) E R2 • and
Dis bounded by the dosed surface s C R-. Let the Lane {y=O, (x, z) ER 2 } i the
fre surface of fluid at rest. Thus the body is submerged, and it moves in the direction
of - x-awis with the velocity U(t/e). We choose the vertical size of the body as the I
chi-acteristic length L.

We seek a pair (#, •) satisfying 3
I
I
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V 20=0 in W=PR\T (1)

It-UO$+f=O, y=O (2)

qt-UqX-#O=O', y=0 (3)

O/On = U cos(n, x) on S (4)

O=fo, y=O |(5)

17=ý, y= =O (6)

Thus O(x, y, z, t, e) can be regarded as a velocity potential of induced waves in a
coordinate system moving with the body, and q(x, z, t, e) is the corresponding elevation
of free r . The unit normal •' is directed into W.

For the pair (0, V) satisfying (1) -(6) with U(t/e) described above, the following
asymptotic formulae are true as e--O:

I = [U(t/C) - <U>] [vo(x, y, z) + o(x, y, z, t)1

+ C[8(t/e) vl(x, y, z, t) + ql(x, y, z, t)] + O(i2) (7)

q= iO(x, z, t) + e{f(t/e) [(o'&o/&x)(x, z, t)

+ (&vcy)(x, 0, z)] + 771(x, z, t)} + O(c2). (8)

Here
1

P(T) = G(T, o) U(r) do., 0 <_ _< 1

0
G(,r.,)=H(7-o) - (r-o) - 1/2,

where H is the Heaviside-function. The function P(7) is extended periodically to the
half-axis T > 1. The function G(r, f) is a generalized Green function of the periodic
boundary value problem for the operator d/d-r.

The functions vm(m = 0, 1) must be determined from

V 2vm = 0 in W, vm=6,.1 (CO/.ox) for y=0,

Ivn/an = b0m Cos (n, x) on s. (9)

The pairs (Orm, ilm)(m = 0, 1) are the solutions of the initial boundary value problems

V 2 m=-0 inW, (10)
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NM- <U> -N- _+,7. = o, y = o, 0(2
+q=, =,(11)

-- -Uy/• • =oy-, " t>O_ (12) 1

aol&oan = 60 m<U> cos(n, x) on S, (13)

and

OM-=[P(0)'8 °mfo/ m, y =}0 (14)

.,,,.~~~~~ ~~~ = 0-~~..[ ,.,• .,- •

Here 6kn is the Kronecker delta. 3
Thus 0o can be regarded as the velocity potential of waves due to the body at

the forward speed <U>, and i7o is the corresponding elevation of free surface. Theformula (8)demonstrates that the free surface elevations q and i7o coincide up to a term

0(e), but this is not valid for the potentials 0 and •0-,.
For m =-0 the problems (9) and (10) - (15) can be solved independently of each

other. Then we have to find v from (9), and at last we obtain the solution 01 of the
problem (10) -(15). In an anvogous manner, one can derive an arbitrary number of
terms to extend the expansions (7) and (8).

Wave resistance and other characteristics
Applying the usual formula, we get from (7) that for the force F(t, r) acting on

the body, the following asymptotics are true

-[TJ(T)-<TJ>1 2  ~W dS

+ ~ IU,)-<> I-<>WV 0I'd ~)

S I
Then, averaging in the variable r, we find that

<F> = O(t)-(<U2 >-<U>2 ) J n dS +O(e), (16)
SI
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I where

iF,(t) = DOL>~ <U>> -<U >0.a

is the force acting on the body moving with the mean velocity l<U>. The second term
in equation (16) is proportional to the dispersion of velocity <U2> -<U>4 > 0.

Let us consider the horizontal component R(t, r) of the force (wave-maldng
resistance). Using the boundary value problem (9), we get from (16) that

<R> = P 0 (t) - (<U 2 > - <U> 2 ) 1o + o(e),

I0 I 0 'J o cos(n, x) dS= JV v.Pcos(nx) dS
S S (17)

Ro(t) = 0(-a - <U>•O--) cos(n, x) dS.

The last formula is the wave resistance of the body at the constant speed <U>. The
asymptotic formula for R then may be written in the following form

R(t,r) = <R> + U!4 J V vo Pdxdydz
w

+ +[<U> -U(Tr)] 1( a W+ VdaX ) cIS +0O(c).

The supplied power can be obtained by multiplying (-1R) by U. Then the
average supplied power is given by the following expression

'-<U>R0 +(<U2 >-<U> 2 {<U> 10+ J(qe- -+Vo -9) dS}+ 0(e),

which differs both from the power required for the motion at the mean speed <U> and
from the power required for overcoming of the mean wave resistance <R>.

Discussion and numerical examvles

Formula (17) shows that the sign of the difference <R1>-11o depends on the
value of I0. As tlh; wave resistance is directed opposite to the x-axis, then we have the
inequality I <R> >13 11o if 1 > 0. So, it is of interest to find bodies with I, < 0.

It is easy to see that L = 0 if the body is symmetric about the middle-plane
(without loss of generality, we can choose x = 0 as the middle-plane). Indeed, in this
case co(nx) is an odd function of x. Then the solution vo(x, y, z) of the boundary
problem (9) is an odd function of x. The same is true for the integrand in IL.

For a numerical example, the two-dimensional problem (9) with an isosceles
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triangle ABC (see Figure 1) as contour S is convenient. For any contour S we have

fo [cos3 (n, x) + (o8v.,/8) cos (s, x) cos (ni, x)] dS.3
S

In the case of triangle ABC, we get

1ABC co83 (n, x) dS = -sin 2c, 
3

J (vo/9s) Cos (s, x) cos (n, x) dS =[ 2v 0(B) -vo(A) - v(C)1 sin 2a.I

Thus, Io(ABC)<0 if 2v0(B) -vo(A) -vo(C) <tana. For triangles that co-respond to 5
the points above the curve (see Figure 1), the inequality Io(ABC) <0 holds. The
opposite inequality takes place for triangles that correspond to the points below the
curve. For a triangle AB'C, which is symmetric about y-axis with any triangle ABC
shown in Figure 1, the inequality I 0(AB'C) > 0 is valid.

Numerical results are also obtained for right triangles that have one of their legs
on the y-axis.
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VORTICAL FLOW PAST SLENDER BODIES AT INCIDENCE:

EXISTENCE, UNIQUENESS, BIFURCATION AND STABILITY

by 3
S. P. Fiddes

Department of Aerospace Engineering
University of Bristol

United Kingdom I
Vortical flows past slender bodies at high angles of attack play an important role

in aerodynamics. The vortical flow has a marked effect on the forces and moments
acting on an aerodynamic vehicle and can often determine the ultimate stability and
performance of the vehicle. The study of vortical flows has thus fascinated
aerodynamicists for many years, following early analytical studies of the flow past
slender wings in the early 1950's. However, a particular problem arises with slender I
bodies in that the flow can spontaneously develop an asymmetric separation, even
though the body is laterally symmetric and being flown without yaw. There has been
considerable debate over the origin of this asymmetry with surface imperfections,
asymmetric boundary layers, hydrodynamic instabilities and a range of other
mechanisms being suggested as the root cause of the asymmetry. It is only recently
that theoretical methods have been applied successfully to this problem of asymmetry
and the underlying mechanism of asymmetry finally identified.

The paper will present the main results for the properties of the vortical flows
past slender bodies as predicted by semi-analytical methods in the framework of
slender-body theory. The paper will concentrate on inviscid results, where the
separation is represented by the vortex-sheet or isolated vortex model and the position
of separation from the body surface is prescribed. The relationship between these
solutions and fully coupled viscous solutions for laminar and turbulent flows and the I
role of asymptotic models of boundary-layer separation will be discussed.

The main mathematical problem in computing the flow is finding the strength
and location of the vortex sheet or isolated vortex core representing the separated flow. 1
The vortex system must be force free by aligning itself with the local flow direction.
The problem is essentially a nonlinear free boundary value problem, and a particularly
accurate solution procedure will be described. This is based on a multidimensional
extension of the Newton-Raphson iterative scheme. An important part of this iterative
method is the construction of a Jacobian matrix of partial derivatives that reflect the
rate of change of error (in terms of force on the vortex system) in the solution with
changes in position of the vortex system.

A major finding of this study is the prediction of the development of asymmetric
solutions for the vortical flow past symmetric bodies via a process of bifurcation from
the symmetric solutions. Nonunique solutions are found for certain combinations of
body shape and incidence. The bifurcation of the solutions manifests itself as a singular
Jacobian matrix in the Newton iterative scheme, and this is used to track the onset of
asymmetry in the symmetric solutions. I

To determine which of the multiple solutions is likely to occur in a real flow, a
stability analysis of some of the solutions have been performed. It will be shown that
the eigenvalues of the Jacobian matrix of the Newton scheme determine the stability of
the so utions. It will also be shown that an exchange of stabilities takes place with the
appearance of the asymmetric solutions. As a consequence of this the asymmetric flows, a

I
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I where they exist, are found to occur naturally in preference to the symmetric flow. The
onset of asymmetric flows is thus predicted to be an essentially inviscid phenomenon,
and does not require viscous effects or surface imperfections to explaiu it. Results will
also be given for the effect of body shape on the development of the asymmetric flows,
and it will be demonstrated that body shape has a powerful effect on the suppression of
the asymmetry - a useful result for the practicing aerodynamicist.

As well as non-unique solutions, the breakdown of steady, conical flow solutions
of the flows past conical bodies has been found - i.e., non-existence of solutions under
certain circumstances. The role of this nonexistence of steady solutions as a precursor3to vortex shedding from the body will be discussed.

Finally, some recent results from various CFD calculations of separated flows
past slender bodies will be described, to illustrate the important role that the analytical
studies of vortical flows have played in identifying realistic solutions from the flowI codes, and the role of analytical techniques in determining global properties of the
vortical flows, rather than the 'spot' solutions given by CFD.

I
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WEAKENING OF THE CUMULATIVE PHENOMENON 5
AND SHOCKS IN TRANSONIC FLOWS

by 3
A. G. Kuz'min

Institute of Mathematics and Mechanics
St. Petersburg University

Russia

The equations of inviscid gas motion are known to possess solutions that describe
steady, shock-free, transonic flows in the following situations:

1) through an internal compression intake, 5
2) through an external compression intake,

3) with a local supersonic region,I

4) with a local subsonic region, 3
5) with a dosed sonic line (non-isentropic flow).

In practice some of the above flows appear to be unstable, so that any deviation of wall
shape from a shock-free configuration produces a shock wave in the flow, although I
possibly a very weak one. Transonic flow stability with respect to deviations from the
steady-wall-shape deviations has been treated mathematically in a number of papers;
however, the causes of the flow instability and of the shock were not made quite dear.

Consider a smooth, plane, steady, transonic flow described by the velocity
potential §(x, y). A disturbance u(x, y) of §(x, y) satisfies the following linear equation
derived from the full-potential one:

So 'i '] +--% %A] = 0. (1)

Here %P(x, y) is the steam function; S and T are known functions defined by the given I
flow: T > 0 in the flow field, S > 0 in the subsonic region, and S < 0 in the supersonic
region. Thus, equation (1) represents a mixed-type problem.

In Kuz'min (1992a), a mathematical study of boundary-,value problems for 5
equation (1) was carried out using a priori estimates in Sobolev spaces. Let Ai be the
points of the sonic line where the flow decelerates and two situations may be
distinguished: either I

(i) the velocity vector is orthogonal to the sonic line (points A.2), or

(ii) the A, are endpoints lying on a solid wall, and here the angle 6 of the sonic i
line emanatica from the wall is greater than 4/2 with respect to the flow
direction (points Ail).

As shown in Kuz'min (1992a), there exist singularities of the solutions to the boundary-
value problem at the points Ai. This result establishes the following linear stability

I
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conditions for transonic flows:

(i) the orthogonality points A,2 are to be absent in the flow, and

(ii) a proper wall perforation is to be implemented near the endpoints Ail to
prevent singularities at these points.

U The latter singularities are caused virtually by a cumulative phenomenon, that is
associated with the increase of disturbance amplitudes in the narrowing portion of the
supersonic region.

Thus, flows 1 and 5 (indicated above) are unstable because of the presence of the
orthogonality points A,2 . Flow 4 appears to be linearly stable. As for flows 2 and 3,
one can employ a proper wall perforation and control to provide stability. Hereafter, we
describe some results in detail just for flows 2 and 3.

IA
"I - -

>

Figure 1

Consider a smooth, decelerating, transonic flow through a curvilinear channel
(see Figure 1). The gas velocity is supersonic at the inlet and subsonic at the outlet.
We prescribe an initial disturbance at the inlet and aim at finding the disturbance field
in the channel. According to linear theory (Kuz'min, 1992a), a weak singularity
(namely, a discontinuity in first-order velocity derivatives) arises at the upstream
endpoint b of the sonic line BA; that singularity propagates along the dashed
characteristics shown in Figure 1. Computations, moreover, reveal either a compression
or rarefaction wave generated on the sonic line near point B. The amplitude of this
wave, the so-called 6-wave, depends on the angle 6 of the sonic line inclination to the
wall. If 6= 7r/2, then the 6-wave yields a velocity discontinuity on the bow
characteristic BB and we obtain a linearized version of the shock wave. It is exactly
such a situation tht occurs at the center of the internal compression intake.

Computations confirm the existence of the cumulative phenomenon in the
supersonic region. When an active control is implemented on a portion of the upper
wall confining the point A (see Figure 1), and Darcy's law is employed there as a
boundary condition, computations show decaying oscillations of the velocitydisturbance; thus, we obtain a continuous disturbance field. This illustrates a
prevention of the cumulative phenomenon by the control, which offsets the disturbance
energy-

In addition, the velocity disturbance is shown to admit the following asymptotic
representation in the vicinity of the endpoint B of the sonic line (Kuz'min, 1992b):
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A__I n .line= (6)1-7/3 0 -l+ 2"/ 3 fR(7, )+ if UIBBl=fO*7+o(I 7 ). (2)

Here XI is the disturbance of the nondimensional velocity A = v/a. and R is a bounded
function.

S0.68 m=tO .68

ICA

Figure 2

We now turn to transonic flow through a channel with a local supersonic region. I
The aim is to study the details of the shock rise in the supersonic region; we deal here
with the nonlinear full-potential equation. First, a shockless bump utilizing Sobieczky's
fictitious gas method (Sobieczky and Seebass, 1984) was designed. The starting channel I
geometry with a circular bump, of chord length 1 and height 0.1, was the same as
considered by Ni (1981). The shock-free flow field was computed with the method of
characteristics is depicted in Figure 2. I

Let us now add the disturbance

Ay=Y[1 ~~ " co22 Za](3

to the shockless wall shape in an interval a < x < b containing the point C (see Figure 1
2). If Y is sufficiently small, then the shock wave origin is located in an arbitrarily
small neighborhood of the point A. This confirms the conclusion of linear theory that
disturbance cumulation results in a shock close to A. If the amplitude Y of the wall I
disturbance increases to a certain level, the origin of the shock wave jumps to the point
C3 due to the combined effects of the cumulative phenomenon and nonlinear instability.
In all cases the shock orgin is located near the sonic line; it is accounted for by
nonlinear instability, which develops more rapidly near the portion of the sonic line
(where the flow decelerates) than in the remaining part of the supersonic region.

In addition, the shockless bump with the added disturbance (3) was treated I
under an active control implemented in 1.48 < x < 1.78. The adjustment of the active
control was carried out by supporting the same pressure distribution in the cavity
beneath the perforation as the pressure distribution on the undisturbed shockless bump.
Such a control turns out to eliminate the shock wave caused by the disturbance (3).
For the case of the circular bump (Ni, 1981), using the aforementioned active control, I

U
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we again obtain a transonic flow which is nearly shock-free.

In recent studies of perforated airfoils aimed at weakening the shock (Chung-
Lung et al., 1989), the perforation was placed traditionally in the shock root region of
the airfoil's surface. However, our studies show it expedient to implement a proper
control along the entire narrowing portion of the supersonic region. In a number of
papers devoted to shock-free airfoil design, the target flow pressure/velocity component
used was prescribed throughout the surface of the airfoil (Giles aidDrela, 1987). Such
a prescription is incorrect from a mathematical viewpoint and must produce internal
shocks, because it does not absorb perturbations and, hence, does not prevent the
cumulative phenomenon, even though the pressure vanies smoothly on the surface of the
airfoil.
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STRUCTURE OF THE THREE-DIMENSIONAL I
TURBULENT BOUNDARY LAYER

by3
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USA

The asymptotic structure of a three-dimensional turbulent boundary layer in the
limit of large Reynolds number is considered. As in two-dimensional flows, the 3
boundary layer is divided into two layers, viz., the inner wall layer where turbulent and
viscous shear stresses are comparable in magnitude, and a relatively thicker outer layer
where viscous stresses are negligible. The three-dimensional boundary layer may be I
best described in a streamline coordinate system as shown in Figure 1. At the edge of
the boundary layer, the velocity U. is aligned with the streamwise coordinate x The
cross-stream and normal coordinates, x2 and xq, respectively, complete the orthogonal
system. In general, the external streamline is curved which sets up a cross-stream
pressure gradient. Under its influence, a cross-stream velocity component, u2 and xs,
respectively, complete the orthogonal system. In general, the external strekamine is
curved which sets up a cross-stream pressure gradient. Under its influence, a cross- a
stream velocity component, u2 , develops within the boundary layer and, consequently,

the velocity vector rotates away from its direction at the boundary-layer edge. Both
components of velocity, u1 and u2, must satisfy the no-slip condition at the wall; hence, Ithe cross-stream velocity attains its maximnum within the boundary layer. The angle 0
is denoted as the velocity skew angle, and its value at the wall, 0,. is evaluated using
the L'Hopitals rule and is called the wall skew angle.

An important result from the asymptotic analysis is that the wall skew angle Ow
scales on the friction velocity uT which is defined as ur =4-./p where r.1 and p are the
wall shear stress and density, respectively. The streamwise velocity distribution is
similar to that in two-dimensonal boundary layers. Specifically, in the wall layer

UI=uU + + . .. , (1) 1

where u. = uicos•w/Ue and

U+=O at y+=O; U+vllogy++Ci as y+--io. (2) I

Here y + is the usual scaled normal variable, and x and Ci are assumed to be 0.41 and
5.0, respectively. In the outer layer, the expansion for u1 takes on the usual defect
form, viz.

. 8F1 (3) 1
where

109 17 g + Co as q.',(4)3

to match the velocity in the wall layer. Here qiis the normal coordinate scaled with I
respect to A0 which represents the boundary-layer thickness. Matching the velocity in I
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(1) and (3) in the overlap region, and using (2) and (4), gives the match condition,

-- 1 Ue _ l1
-- = u log (Re Ao) + Ci-C. (5)

It may be noted from (1)-(5) that the structure of the streamwise velocity profile is
similar to that in two-dimensional turbulent boundary layers.

It emerges from the asymptotic analysis that an expansion to two orders is
necessary in order to describe the cress-stream velocity u2. Specifically, in the wall
layer,

u2 *= U++... (6)

where 0, is the scaled wall skew angle defined by

0 tan OW0(1). (7)

3 In the outer layer,

u2 = uOI,{Gl+u,G2 +.. }, (8)

i where

£ G1 -4, G2 e.llog q+Co as n--O, (9a)

a G1, G2--+O as V-+oo. (9b)

It may be easily confirmed, using (5), that the outer- and wall-layer expansions match
in the overlap region.

It is of interest to discuss the manner in which the cross-stream velocity attains
its characteristic shape in Figure 1. In the outer layer dose to the boundary-layer edge,
the cross-stream velocity u2 is dominated by the contribution from the leading-order
term, G1, and continuously increases in magnitude with decreasing distance from the
wall. Ks the overlap region between the outer and the wall layers is reached, the
second-order term, G2, begins to make an increasingly negative contribution until the
cross-stream velocity ieaches its maximum value A further decease in distance from
the wall reduces the sum of the O(u.) and 0 terms toO(u) in the wall layer in

much the same fashion as the sum of the O(1) an O(u.) terms reduces the streamwise
velocity in the outer layer to O(u.) in the wall layer.

Similarity equations for the outer layer are derived, and it emerges that a two-
parameter family of similarity solutions exist, and these are the pressure-gradient
parameters defined as

g6 p 6' Pe~ 2 (10)Kju, 1c= I -- ,12, (o

where 6P is the displacement thickness, h, is the streamwise metric and K 2 is the
curvature of the external streamline. Computed solutions of the outer layer equations,
using a simple algebraic model consistent with the asymptotic results, are matched to
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an analytical wall-layer profile to produce composite profiles spanning the entire
thickness of the boundary layer.

The influence of Reynolds number and cross-stream pressure gradient are
investigated. It is found that the extent of collateral flow from the wall increases with
increasing Reynolds number. In terms of the wall layer variables y I, the location of

the maximum cross-stream velocity from the wall increases with Reynolds number, but
in terms of the outer-layer variable q, it decreases. This confirms that the location of
the maximum cross-stream velocity from the wall is within the overlap region between
the outer and inner wall layers.

I
• -• t external streamline

bounda~ry-la~yer
edge velocityI

° I

cross-stream streamwise I
velocity profile velocityprofileI

U ,1sI

I

-X2 limiting
streamline

Figure 1. Schematic of a three-dimensional turbulent boundary-layer velocity

profile. I
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AND MARGINAL SEPARATION

j by
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A comprehensive analysis of a classic two-dimensional boundary layer is
developed with the aim of revealing possible types of singularities related to separation.
According to the basic assumption, the limit flow regime with the singular point of
vanishing skin friction obeys an analytic solution where the frictional intensity
approaches zero according to quadratic law rather than varying linearly with distance.
Small deviations from the limit regime are described in terms of eigen-functions, three
of which involve singularities. The flow field for all supercritical regimes is continued
into a small region centered about the singular characteristic arising from the point of
vanishing skin friction in the undisturbed limit solution. The solvability condition for a
key boundary value problem posed in this region as a result of matching with the
global-scaled solution upstream gives three different types of singularities of the Prandtl
equation. According to the weakest type singularity, the skin friction varies as the
square root of the cube of the local distance. The next type includes a sudden change in
the wall shear stress derivative with respect to coordinate along the solid surface; it was
ruled out of the basic limit solution. Then the famous Landau-Goldstein singularity
with the skin friction being proportional to the square root of the local distance evolves.
A still more complicated flow pattern may be composed of the singularity with the
sudden change in the wall shear stress derivative superseded by the Landau-Goldstein
singularity at some small distance downstream.

The flow patterns of such a kind have been clearly observed experimentally in
wind-tunnel tests, where a local minimum in the wall shear stress preceded massive
separation. Thus, the weaker singularity may be considered to be a prerequisite for
incipient separation, giving rise to a short bubble confined by flow reattachment to the
body surface; the Landau-Goldstein singularity marks reseparation of the reattached
boundary layer. The widespread explanation of reattachment was associated with the
onset of turbulence in the separated flow inside the short bubble. However, the same
phenomenon can be predicted theoretically to occur in a laminar boundary layer
suffering from turbulent pulsations.

An analysis of an interactive boundary layer within the framework of the triple-
deck theory is also presented with an emphasis on the formation of separation zones.
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CONSTRUCTION OF OPTIMAL CRITICAL AIRFOILS

by
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Gilbarg and Shiffman characterized optimum non-lifting critical airfoils, those
which provide the largest freestream Mach number for a given thickness (or area), as
having vertical segments at nose and tail connected by a sonic arc. We have calculated
these shapes for a variety of Mach numbers using a hodograph formulation. An
analytical solution to the problem is provided under the assumptions of transonic small
disturbance theory (TSDT). For TSDT the vertical segments at nose and tail are
replaced by f power bodies. There is good agreement between exact calculations and
(TSDT) shapes. A critical similarity parameter Kc is found. The work is extended
with the constraint of a finite tail angle.

An accurate code based on Sels method is developed to calculate the flow past
given shapes so that a comparison can be made with conventional airfoils such as
NACAOOXX. The results show an improvement of 2-5% in critical Mach number.

Next the considerations are extended to the lifting case. The topology of the I
hodograph is shown under (TSDT). Calculations are carried out based on the idea that
long sonic arcs from the nose are desirable. In this way a series of lifting airfoils has
been found whose critical Mach number is close to that of the non-lifting airfoils.

I
I
I
I

I
I
I
I



89

VISCOUS-INVISCID LAMINAR INTERACTION NEAR
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Thi paper discusses the flow field near the trailing-tip region of a slender body
of revolution of finite length placed in a uniform incompressible stream when the
characteristic Reynolds number of the flow is large. Under these conditions the well-
known Mangler transformation is not applicable since the radius of the body can now be
of the same size as the boundary-layer thickness. In this case, one must corsider the
effect of transverse curvature in the boundary-layer development, even though it is still
permissible to neglect longitudinal curvature effects to leading order. In addition the
flow in the immediate vicinity of the trailing tip needs special attention since now the
body radius itself shrinks to zero.

Bodonyi, Smith and Kluwick (Proc. Roy. Soc. Lond. A 400, 1985) studies the
classical boundary-layer development over a family of slender bodies of revolution of
finite length with special emphasis on establishing the flow properties near the trailing
tip of the body. They found that, in contrast to the case of two-dimensional flow, the
axisymmetric boundary layer does not simply set up an arbitrary velocity profile at the
onset of the trailing tip. Instead it develops an interesting multi-layer structure
depending explicitly on the trailing-tip shape which they took to be of the form (1- x)n
where x = 1 corresponds to the trailing tip and n > 0 is an index of the body shape.
Different multi-flow structures were deduced depending on the value of the
parameter n. They also gave an argument showing that the classical boundary-layer
strategy breaks down near the trailing-tip as x-.1 - with the streamwise interaction
length scale being a functio • both the Reynolds number and the parameter n, such
that 1 - x = O (Re in Re)/K M)

In this paper the viscous-inviscid pressure interaction structure is studied in
detail for the case when 1/4 < n < 1/3. In this range the pressure interaction first
affects the vicu wall layer in such a way that the body radius and the wall layer

thickness are comparable in size so that the interactive flow is no longer quasi-planar.
Here the governing equations are the axisymmetric boundary-layer equations subject to
appropriate boundary conditions for the interaction. It should be noted that the
criterion on n restricts only the incoming form of the surface shape, at the upstream end
of the interaction, not the shape throughout the interaction region. In particular, we
can study body shapes with blunt or abruptly cut-off trailing tips, i.e., base flow
problems, directly within the framework of the interaction problem.
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Specifically, we shall present the interaction flow structure for the trailing-tip i
region for body shapes with n ranging between 1/4 and 1/3. Furthermore, numerical
and analytical solutions of the appropriate governing equations will be presented for
slender axisymmetric bodies with different types of trailing-tip shapes. 3

I

I
I
I

I
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THE GENERATION OF TOLLMIEN-SCHLICHTING WAVES

BY FREESTREAM TURBULENCE

by
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Laminar-turbulent transition is an extraordinarily complicated process consisting
of a number of events. It starts with the transormation of external disturbances into
internal oscillations of the boundary layer taking the form of well-known Tollmien-
Schlichting waves. In relatively quiet flow, their initial amplitudes are not high enough
to provoke immediate transition.' Tollmien-Schlichting waves must first amplify in the
boundary layer to bring into play the nonlinear effects characteristic ef the trans;tion
process. Numerous experiments have dearly revealed that the extent of the
amplification region is strongly dependent not only on the amplitude and/or the
spectrum of e disturbances but also on their physical nature. Some of the
disturbances easily penetrate into the boundary layer, others do not. To study these
differences, the problem of the boundary-layer receptivity to external disturbances was
formulated by Morkovin (1969) as a key problem in the laminar-turbulent transition.
The main objective of the investigations in that field is the determination of amplitudes
of generated Tollmien-Schlichting waves, and as a result the elucidation of those types
of external disturbances which easily turn into Tollmien-Schlichting waves.

From the mathematical point of view, the receptivity problem appears to be
much more difficult as compared with the stability problem. The latter is associated
with the solution of the Orr-Sommerfeld equation, while the former calls for solution of
a boundary value problem deriving from the Navier-Stokes equations. To date direct
numerical simulations of the full Navier-Stokes equations appears to be very difficult as
far as unstable boundary-layer flow at high Reynolds numbers is concerned. On the
other hand, asymptotic methods are well-suited for this type of analysis.

The first paper on the topic was published by Terent'ev (1981). His analysis was
devoted to Tollmien-Schlichting wave generation by a vibrator installed on the body
surface. To describe the process, he used an unsteady version of the triple-deck theory,
which was known to describe the asymptotic structure of Tollmien-Schlichting waves.
As a result, an explicit formula was obtained for the amplitude of Tollmien-Schlichting
waves propagating in the boundary layer downstream of the vibrator.

The problem of the Tollmien-Schlichting wave generation by sound has been
considered by Ruban (1984) and independently by Goldstein (1985). Effective
transformation of external disturbances into Tollmien-Schlichting waves is possible if
resonance conditions are satisfied. For boundary-layer flow, the resonance supposes
coincidence not only of frequencies, but also of the wave number of external and
internal disturbances. This coincidence may be easily achieved in the problem
considered by Terent'ev (1981), since the frequency of the vibrating part of the surface
and its extent are independent of each other. If an acoustic wave plays the role of
external disturbance, it is possible to choose its frequency in a proper way, but the wave
length will be much greater than that of the Tollmien-Schlichting wave. In order to
introduce the necessary length scale into the problem, Ruban (1984) and Goldstein

lThis is just the came, for example, for aircraft flying in atmosphere.
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(1985) supposed that the body surface is not absolutely smooth, and the acoustic wave
is interacts with disturbance introduced into the boundary layer by wall roughness. As
a result of their analysis, they concluded that effective generation of Tolhmije-
Schlichting waves takes place if the length of the roughness is of the order of Re
where Re is Reynolds number. U

The present work is devoted to the third possible way for Tollmien-Schlichting
wave generation, namely that associated with transformation of free-stream turbulence
into boundary-layer flow oscillations. For simplicity uniform turbulence interacting
with flat plate, boundary layer will be considered. The problem was first analyzed by
Hunt and Graham (1978). They considered the inviscid process of the velocity field
deformation near the flat plate on account of slip condition. Under the assumption that I
the vorticity field is not influenced by the wall and is just the same as in free stream, it
has been shown that th/ vortex boundary layer forms near the flat plate. Its thickness
is of the order of Re - 1 . Near the bottom of the layer, velocity fluctuations have
maximum amplitude, but the pressure gradient rem i zero. Investigation of the flow
inside viscous boundary layer with thickness O(Re-") under these circumstances was
carried out by Guliaev et al. (1989). As a result, they found out that disturbances do I
not penetrate into the boundary layer and so do not generate Tollmien-Schlichting
waves.

We intend to show that this assertion is not correct. The mistake follows from
the assumption (see Guliaev et al., 1989) that the vorticity field inside the vortex 3
boundary layer is undisturbed and coincides with that upstream of the flat plate. More
careful analysis based on the application of matched asymptotic expansions technique
for the solution of the Navier-Stokes equations will be used to solve the problem. As a I
result it will be shown that turbulence deformation takes place in the vortex boundary
layer leading to nonzero pressure gradient fluctuations near the outer edge of the viscous
boundary layer. Explicit formula will be obtained for the amplitudes of generated I
Tollmien-Schlichting waves for different types of surface roughness.
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We report results of two different, but related, problems: (a) the nonlinear
evolution of a pair of initially linear oblique waves in a high Reynolds number shear
layer, and(b) the nonlinear development of a wave packet in an unstable boundary
layer. In both cases fixed frequency disturbances are assumed to evolve downstream in
a linear fashion until in the neighborhood of the upper branch nonlinear effects can no
longer be neglected.

For the first lblem, attention is focused on times when disturbances of
amplitude e have O(k'1R) growth rates, where R is the Reynolds number based on
shear layer width. The development of a pair of oblique waves is then controlled by
non-equilibrium critical-layer effects (Goldstein and Choi, 1989). Viscous effects are
included by studying the distinguished scaling e = O(R-1). An amplitude equation of
integro-differential form is derived. When viscosity is not too large, solutions to the
amplitude equation develop a finite-time singularity, indicating that an explosive
growth can be induced by nonlinear effects. Increasing the importance of viscosity
generally delays the occurrence of the finite-time singularity and sufficiently large
viscosity may lead to the disturbance decaying exponentially. By studying the very
viscous limit, a link between the unsteady critical-layer approach to high-Reynolds-
number flow instability, and the wave/vortex approach of Hall and Smith (1991), is
identified. In this limit, the amplitude equation reduces to a simpler form, but still
contains a nonlocal nonlinear term Further, the critical layer splits into two regions: a
steady viscous critical layer, and a diffusion layer accommodating the vortex flow. This
structure turns out to be related to the second problem studied in this paper.

In the second problem, a wave packet of almost two-dimensional Tollmien-
Schlichting waves is studied. The amplitude of the wave packet is a slowly varying
function of spanwise position, as well as of the streamwise spatial variable. Attention is
focused on the upper-branch-scaling regime. We show that dominant nonlinear effects
come from both the critical-layer and the diffusion layer - in the latter layer nonlinear
interactions influence the resolution by producing a spanwise-dependent mean-flow
distortion. The evolution is governed by an integro-partial-differential equation
containing a history-dependent non-linear term. A feature of the amplitude equation is
that the highest derivative with respect to spanwise position appears in the nonlinear
term. It is hoped that this study may offer an explanation for the wave packet splitting
observed by Gaster and Grant (1975).
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An asymptotic theory of subsonic boundary-layer receptivity near the leading

edge was proposed by Goldstein (1983) and advanced by Kerschen et al. (1989).
However, their results cannot be applied immediately to supersonic boundary layers I
since in this case the spectrum of normal modes has a new characteristic. In contrast
with the subsonic case, the oscillation damping rates are small in the region lying
upstream from the neutral curve (Fedorov, 1982). As the leading edge is approached,
the normal modes of the boundary layer become synchronized with sound waves
(Gaponov, 1985), and thus their frequencies and wave numbers are dose to those of
sound. For these reasons, the neighborhood of the leading edge appears to play the
dominant role in excitation of instability at supersonic speeds. This assumption is U
confirmed by experiment (Maslov and Semenov, 1986) and also finds support in the
strong influence of leading-edge bluntness on laminar-turbulent transition (Gaponov and
Maslov, 1980). 3

We examine the excitation of instability near a semi-infinite flat plate situated in
a uniform supersonic flow of velocity Uoo and kinematic viscosity v. We suppose that
the flow is disturbed by a small-amplitude acoustic wave of frequency w. At low values

ofthe frequency parameter F=vw'U0 the disturbance field has a structure
schematically shown in Figure 1. Cartesian coordinates x, y, z (referred to Uoo/W) can
be resolved into the following scales variables: 3

x=(x, e-2 X2 , -4x 3), y=(eCyl, Y3, e'-Iy2)"

Here e = F 1/4A 1/ 2 is a small parameter. The parameter A = 6*(xv/w) - 1/2 is
introduced into the scaling to take into account the strong dependence of the boundary-
layer displacement thickness 6* on the Mach number M and wall-temperature factor
T•. The "rapid" scale x1 = 0(1) corresponds to the acoustic wavelength; the maximum
oinstability is located m the downstream region x = O(1), and the diffraction zone

=0(1) is responsible for the transformation o external disturbances into the I
boundary-layer normal modes.

At first we consider the process of receptivity to an acoustic wave propagating
downstream parallel to the pLe surface. The solution within the diffraction zone can I
be represented as P2 (x.2 , y2)-e', where S=a1 x+z-t i thp of ke external
wave with longitudinal wavenumbers 1
corresponding to forward and backward wave fronts. Applying the method of matched
asymptotic expansions in the y-direction, we can formulate the problem for the pressure
amplitude p2 ; it is reduced to an integral equation for the pressure amplitude a

I
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P1 (xI) = P2 (x2 , 0) within the boundary layer under the diffraction zone given by,

z2  CPINX) -AJ0 x2-f PI()dc- . 1

0

The parameter A depends on the boundary-layer velocity U(Yj) and temperature T(II)
distributions with respect to the self-similar variable i,= yl/=

_(o`l,2- 1)2 ... 0IT (42,2 + 2_M2] dj/.•=~~2 _ (,•u1)2 J[2ri(I: 2(a1 ,2 -1)- 1)201 1
The solution of equation (1) is represented in the series form

00= •oa / 2(AX2)n'= a=l, an - rJ + 1/2)

n=0 =O rG1) (2

The asymptotic structure of the solution at large x2 can be found by replacing
the power series by an integral in the complex n-plane. If Ri!(A) > 0

P1 = KCO(r.2x2)l/ 8 exp(rA2 x4/2) - (TiAx 2) - 1 +--, (3)
K=(8r)I 4 A, A-- [n /8-I/•F(nT32)] =0.935...,

If Re(A) < 0, the asymptotic solution contains only the second term of (3), corresponding
to the acoustic field near the wall zone. Th'- first term is the "seed' for the normal
modes of the boundary layer. The comparison between the rigorous solution (2) and its
far-downstream asymptotic form (3) presented in Figure 2 shows that quite good
agreement is observed at IAxj >2.

In order to extend the solution in the boundary layer with variables (xN,
y. =0(1), we employ the formalism developed by Nayfeh (1980) and Zhigulev an-d
Timin (1987). The perturbation vector consisting of the pressure p, temperature 0,
velocity vector u, and their derivations with respect to y3 can be represented in the
form

Z= a(x3 ) [- 0 + z + -- + )'exp(iA),

z3

e= -4 1 a(x3)dx3 + -pzwt.
0

The perturbation amplitude z and the eigenvalue & are determined from the
boundary-value problem, while the be&;avior of the amplitude function a(x3) is obtained



96 3
from the condition of solvability for the second-order approximation z. Analysis of the
problem shows that there are two normal modes synchronizing with t~ie acoustic waves I
at the leading edge. The asymptotic fornzs of eigenvalues and, nplitude functions for
such modes at smallx 3 are: al + ••x 3 + , a --= C•3  + .... Substituting
these relations into the representation (4), we can get an explicit expression for the U
pressure perturbations in the boundary layer as x3-:0,

p = C.. X14 exp(A2e - Y) exp (iS). (5)

The exponential part of the asymptotic solution (3) coincides with the
asymptotic form (5) correct to a constant multiplier, i.e. the zone of diffraction and far-
downstream boundary layer overlap (shaded zone in Figure 1). By matching we obtain

C = e- 1/ 2K 0 -(TrA2)1/ 8 . (6)

Thus we have determined the relation between the eigensolution (4) describingthe first and second boundary-layer modes and the parameters of the exeral acoustic

wave propagating downstream parallel to the plate surface.

The proposed approach can be generalized to inclined acoustic waves. Variation
of the external forcing leads to variation of the right-hand side of equation (1). We
obtain the explicit form of the coupling coefficient C for acoustic wave with any value of
longitudinal wave number a from the acoustic range: a > a, a .a2. It coincides with
the expression (6) in which the constant K0 is replaced by-a fuction 5

=K{ -exp( ± /4) -i 4p(a)(,2-1) 0,(r) + ep(r)}
Of - e i A1/2A2 '(M 2 -_l)(a&a 2)(a -1) 4

r = i(al,2 - a)f - 2(,XX) - 1. I

The functions t, and 'p are given by the following power series,

W(r) = F: r' 9rn/2anrn,
n=O, 0n ' (r)=jn=0 ;L =0

and the y-component of the wave vector is p(a) = [(M2 - 1)((a - al)( - a 2)]11/ 2. I
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Inviscid-viscous interaction on a flat blunted plate in the weak hypersonic regime
(i.e., when wall-perfect fluid pressure nondimensionalized by free stream pressure, say
w, is much greater than the classical hypersonic viscous interaction parameter Xw) is
studied on the triple deck scales (Stewartson, 1974, and Neiland, 1990). We seek to
delineate the influence of an asymptotically small nose bluntness (which creates a thin
layer of perfect fluid called entropy layer: Guiraud, Vall6e and Zolver (1965)) on the
flow structure near a laminar separation.

We outline some cases depending on the .- :-.tive sizes of the upper deck and the
entropy layer.

1. THE ENTROPY LAYER IS SMALLER THAN THE UPPER DECK

In this case (Lagr6e, 1991), a fourth deck must be introduced, lying between the
main and the upper deck, which is the entropy layer itself (it is characterized by small
density, say gauged by rpo* where r is small, and by small thickness, gauged in Von
Mises transverse variable by d*poo*Ugr*; we noted d = d*/L*, the ratio of tip bluntness
versus the longitudinal scale).

As a result, we obtain a new fundamental equation of the triple deck written in
standard scales. The reduced lower deck equations are identical to those of classical
theory:

au+ 0, au & _ dp +0 2 u (1)

As boundary conditions, we have the no slip velocity condition and,

u(x)- y + A(x), as y--oo. (2)

However, the pressure displacement relation is different and

dp(x) dA(x)pX + Tt = -a .(3)

The infnitesimally small parameter q (directly proportional to the nose blunting by the
thickness of the entropy layer and inversely proportional to the upper deck's scale)
gauges the departure from classical theory a- given below; here Fp denotes the finite



100

part of the integral which is performed through the entropy layer and 3
q = (d/'i)Fp { l7d ý}, and 0(z)= O(dr- X.4 W-I12). (4)d-

ri r P(0t) 1ad(? ~cr XI 4

This may be compared with another entropy effect in Sokolov (1983) and to the wall
temperature effect in Brown, Cheng & Lee (19 90 ).

2. THICKER ENTROPY LAYER, TWO PARTICULAR CASES: 3
2.1 Entropy Layer and Upper Deck are the Same

When the upper deck is the entropy layer, the complete equations of
perturbation have to be solved in the upper deck, the density is given by the density I
profile of the entropy layer (Guiraud et al., 1965):

The longitudinal gauge is imposed by the size of the upper deck. 1
2.2 Entropy Layer is Thicker Than Upper Deck 3

When the upper deck is smaller than the entropy layer, we find again the
classical scale with but different scales (Lagr•e, 1990) because the propagation takes
place in I Iffl of very small constant density (r), for example, the longitudinal gauge is IM(. --M od L' ):1

x3 -- A-5/4(_ _ 1)3/2 s8 2 (Xoo/w) 3 /4 r3 /8. (6)

3. NUMERICAL RESOLUTION

These problems have to be solved numerically, and to this end, we choose an I
iterative method based on standard inverse Keller Box method for Prandtl equations,
plus numerical resolution of the perfect fluid by integration of (3) or by a MacCormack
scheme (case of complete relations (5)), plus a revisited Le Balleur (1978) "semi- I
inverse" relaxation method. This permits strong coupling.

Results for 17 small (first case relation (3)) are dose to those of Cheng et al.
(1990). The linear solution predicts that the Lighthill eigenvalue k increases with 17, so
the curve slope steepens with q?. The separation bubble size appears to increase with q.
Results for second case (complete resolution of (5)) show firmly that increasing the
entropy layer diminishes the bubble, and that ecreasing it increases the bubble I
(confirming qualitatively the relation (3)).

4. CONCLUSION I
To summarize, a rough sketch of small nose bluntness influence may be drawn.

For •I< 1, the study of section 1 (equation (3)) may apply; raising Yj increases
separation (numerically). For 17 of order one, this study fails and complete calculation
of inviscid perturbation (equation (5)) through a thick entropy layer has been I

I
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Sperformed. It seems that the good trends are qualitatively obtained for thin and thick
entropy layer. For larger bluntness (but always with d very small), section 2.2 suggests
new scales. So increasing 17 first promotes growth of separated region, reduces k and
diminishes the apparent interaction region, a further increasing lowers the scale of the
separated region. This is qualitatively comparable with the experimental data of
Holden (1971). The incipient angle separation is correlated with:

ic (x0 /((M3.d)3'2))(0. (7)

--I Holden (1971), through a combination of parameters and experiment, found a= - 7/5
and b-=0. We propose, deduced from triple deck scales, a -3/2 and b= 1/67;3 these coefficients reflect the locality of the interaction.
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ASYMPTOTIC SOLUTION OF AN AXISYMMETRIC 3
IDEAL-FLOW PROBLEM FOR A CAVITY APEX REGION

by 3
A. V. Zoubtsov and G. G. Soudakov

Central Aerohydrodynamic Institute (TsAGI)
Zhukovsky-3, Moscow Region

Russia 140160 U
In this paper a potential ideal fluid-flow with a cavity is considered. It is

supposed that the flow is axially symmetric in the cavity apex region.

Let us introduce the Cartesian system of coordinates x, y, z with the origin being
placed in the ci Rex-ykn asymptotic solution of the Euler equations for the limiting
processes R.= -x+yu+Z'--0 or R---o is studied. The velocity components are
referenced by an absolute value of velocity that occurs on the cavity shape. The
velocity potential and cavity shape equations are represented in spherical polar
coordinates R, 8, a (x = R cos P, y = R nsin a, z=R sin f cos a), by

jp=Rcosfi+Wl(R,#), =-ERsin#-f(Rcosfl)=0.

The functions Wl, 0 satisfy the following equations,

'2W1+ 2 0ýW.1 2 e + tg# CPI0O= 0, (1)

Ve-V(Rcos•f+ 9 p-)=0, IV(Rcosp+WI)-=1at0=0,

and the condition that V ip1 does not have a singularity in the flow region considered
(outside the cavity).

Let us suppose that, in the case IlnR[--oo, the following asymptotic
representation for the W, is valid: 3

ipl - Rng(t)G(t, 0, n) (2)

where n is an eigenvalue, t = lnR and

G(t, P, n)=O(1), 0 < P_< /.

(3) 3
I
U
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I From (1), (2), we can find that the function G is governed by the equation

SG(2 + + g"+ 0"

where

I ()* 8 a '~

I The solution of this equation can be represented as the following asymptotic expansion,

I G(t, P, n) = G0(P, n)+e Gj(fi, n)+o +0

The function Go1 = G0 + (ge/g) G1 satisfies the Legendre equation

Go,1+ctg1P GoI+N(N+I)G01 =0, N=n+g'/g.

The solution of this equation can be expressed in terms of the hypergeometric functionI F by,

Go1=CF(~~N +1 1cos0)6 2  1-N N+23
Go, C, 1•( 2N• - 7- "• o21 8 + C2 cos j6 F . ,- , ,cOB2

where Cl(t), C2(t) are free coefficients.

In the case co 2 #_-_+, the function G01 has the following asymptotic expansion,

G01,'.., al{ •--,•- 11+2 •.-••-]+In sin2 •F.}I

a, = 1-(1/2) =-1r(3/2)

ir(-NI2),r(ll2(N+ 1))' a2 -V 2 r(1/2(1-N), r(1/2(N +2))"

In this formula r(z) is Euler's gamma function, and vA(z) = 1,(z)/r(z) is the logarithmic
derivative of the gamma function.

From the condition that the problem solution must not have any singularity in
the region considered, particularly near P = r, the equality a1 =a9 is necessary. This
asymptotic expansion for the flow potential in cases It Ioo d can be written

I
I
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x~n~tcB(n)+ 9 +In+.} C= -a r --ZW ~ + g~t~ &2ý I J-9(4)

B(n)=#(n+l)+(1-6)(i/2) ctg trn-ln2--(1), n>O, 3
B(n) =,i(-n)-(1-6)(w/2) ctg " u-ln2-#(1), n<O. i

The function 6 is defined as follows: 6 = 1 if n is an integer and 6 = 0 if n is not an
integer. From the condition (3) and the representation (4) for f--0, it is necessary that
C=Cog'/g if n is an integer and C =CO if n is not aninteger, where CO is afree
constant.

For integer n, the velocity components in a cylindrical system of coordinates u., I
ur have the following asymptotic expansion as r/x--,

u,, I+~1 " 1J n l g~+e •_ [sign n-1+ + 9n + I)ny +""}(5I

U + .... I

Using the formula (5) and supposing the velocity disturbance to be small in the cavity I
apex region and at infinity, we can obtain an asymptotic representation of the cavity
shape equation as It Io, according to,

r- = g'(n+l )/2 n>O, r=470+2CgI n=-1,

=++1 n< -2,1

where r0 is an arbitrary constant (r > 0). From the condition that the absolute value of

the velocity is constant on the cavily shape, the equation for the function g(t) as It ,oo
can be expressed as follows:

Inl+e[Sgnn -2+(n-1) n+e ttli =0, r0=0,

g= -2j, roO. 0

From the solution of (7), with (6), a countable set of eigensolutions can be I
obtained which define an asymptotic representation for the shape cavity formula as
tk--oo,

I



j 105

"r=t n'=) 0, x--.oo, r= F -xe-1/-, 2 n, n = 1, x-.o,

I= C r~X(n + 1)/2 (.-in xn 1 [2(n -1)], n>2,

r=roe( + ,jx n = - 1, x--0o, re # 0, (8)

r=ro[1+ 2 CO e (In x)(2 -n)/(n -)} n <-2, x-'oo, ro0O,

( 2C0 ) 1/2.n -wro=0
C (n+ o 2 I x)(2 -l)/n -")(-)

r= 1-(n_1) x1)( n r< - 2, x---o, r 0 = 0

I
I The eigensolutions of the problem considered for n <0 define the asymptotic

representation of the cavity shape as x--oo. The case n = 0 corresponds to the well-
known solution of axisymmetric wake expansion (Levinson, 1946). The eigensolutions
for n> 1 correspond to the case of cavity origination or cavity dosing. The solution for
the case n = 1 has been obtained recently by Sychev (1989). It is easy to show that the
solution of problem (1) satisfying (2), (3) does not exist when n is not an integer.

The solution set obtained in (8) (see Zoubtsov, 1990) increases the possibility of
an asymptotic description of threedimensional separated flow near a body with
constant pressure zones, at large Reynolds numbers.I
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SEPARATION AND HEAT TRANSFER UPSTREAM OF OBSTACLES 3
by

R Puhak, A. T. Degani and J. D. A. Walker
Department of Mechanical Engineering and Mechanics

Lehigh University
Bethlehem, Pennsylvania 18015 I

USA

Three-dimensional juncture flows occur in a variety of circumstances, including
wing/body interactions and where turbine blades are joined to the hub. Recent
experimental studies have dearly demonstrated that the end-wall boundary layer is
inherently unsteady in the laminar regime for sufciently high Reynolds number. A
periodic process develops in the end-wall boundary layer that leads to the creation of
necklace vortices which engirdle the obstacle and appear to dominate the dynamics of
the flow in the juncture region. The vortices are created periodically through what I
seems to be an unsteady separation process in the end-wall boundary layer on the
symmetry plane upstream of the obstacle. It is important to understand how these
vortices develop and evolve, since their motion and influence are the dominant features
of the juncture region. In applications where heat transfer is of interest, and especially
the gas turbine, the necklace vortices are the major influence on surface heat transfer,
giving rise to alternate moving regions of high and low heat transfer. Experiments
indicate that the juncture region undergoes transition to turbulence well in advance of
the rest of the end-wall boundary layer and that the process is due to instabilities that
develop on the necklace vortices. In the fully turbulent regime, a large unsteady vortex
is found wrapped around the obstacle which produces violent eruptions of the surface I
layer below.

In the present study, the development of the boundary-layer flow and heat
transfer (for a heated end wall is considered on the symmetry plane upstream of a
circular cylinder mounted on a flat plate. As a first step in understanding the periodic
motion observed in the experiments, the flow is impulsively started from rest, and the
central interest is in understanding the eventual behavior of the boundary layer along I
the symmetry plane. This is a zone of persistent adverse pressure gradient and very
quickly a spiral focus develops in what appears to be the beginning of the evolution of a
three-dimensonal vortex. Numerical solutions are obtained in both the Eulerian and
Lagrangian formulations, and it is demonstrated that a separation singularity eventually
occurs; in this process the boundary-layer fluid in the vicinity of the spiral focus is
sharply concentrated in a band which progressively narrows in the streamwise direction,suggesting the development of a sharply focused eruption. Such events have been Idearly observed in the experimental studies. Numerical solutions for the temperature

field also show that sharp variations evolve in the surface heat transfer.

To compare and contrast the three-dimensional results with a similar two- i
dimensional phenomenon, the problem of boundary-layer development upstream of a
two-dimensional obstacle was considered, namely a half circular cylinder mounted on a
plane wall perpendicular to the flow direction. Again separation and sharp variations in I
surface heat transfer are found to develop upstream of the obstacle soon after the
impulsive start. The separation time for the upstream boundary layer is approximately
double that on the obstacle itself. The two-dimensional separation response is much
stronger than that observed for the three-dimensional flow on the plane of symmetry.

I
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ASYMPTOTIC THEORY OF VORTEX BREAKDOWN

by

Victor V. Sychev, Jr.
Central Aerohydrodynamic Institute (TsAGI)

Zhukovsky-3, Moscow Region
Russia 140160

Vortex breakdown is one of the remarkable features of high Reynolds number
rotating flow. It has been observed in flow over delta wings and in rotating
axisymmetric pipe-flows (Van Dyke, 1982). This phenomenon is connected with the
appearance (without any visible reason) of a stagnation point at the axis of symmetry in
a thin viscous vortex core and the formation beyond this point of a dosed bubble having
a very slow reverse flow. This so-called "bubble" form of vortex breakdown (Leibovich,
1978) is to be considered here.

The investigation of a vortex breakdown by means of asymptotic analysis of the
Navier-Stokes equations at high Reynolds number is based on an analogy with boundary
layer separation phenomenon. Upstream of a stagnation-breakdown point, the quasi-
cylindrical form of the equations of motion is v d for a flow in a thin viscous core
(Hall, 1972). The radius of the core is O(R- I), where R = UoL/v is the Reynolds
number, U. is the freestream velocity, L is some typical longitudinal length scale of the
core, and v is the kinematic viscosity.

Numerical solutions of the quasi-cylindrical equations (as for the boundary layer
equations) shows that at some point a singularity occurs; the radial velocity component
becomes infinite, but the longitudinal velocity at the axis of symmetry is not zero and
remains positive. In general, this singularity is not removable (Trigub, 1985), so that it
is impossible to continue the solution through this point, and this is physically
unrealistic. This leads to the condusion that vanishing of a velocity at the axis of
symmetry is not a criterion of breakdown in the solution of the quasi-cylindricalequations.

The analysis of this paper shows that, in reality, vortex breakdown takes place in
two stages. First at some point on the axis of symmetry, the total pressure approaches
zero in the solution of quasi-cylindrical equations; however, the velocity on the axis
remains finite and positive here. This represents a real criterion of the vortex
breakdown. Then in a small region near the point of zero total pressure, a stagnation
point appears. The longitudinal size of this region is of the order of the radius of viscous
core, and here the full Euler equations for axisymmetric rotational vortex motion are
appropriate.

It is shown also that the bubble as a whole to leading order is of ul 9eroidal foi
its longitudinal and radial sizes are of the order of magnitudes R-" and R-"/5
correspondingly. The form of the bubble is determined by the requirement that the
variation of the pressure on the bubble surface is small and of the same order as the
pressure in the reverse flow region.

The motion becomes possible due to the action of the radial pressure gradient
associated with rotational motion. The slow reverse motion is determined by suction

into thin viscous shear-layer along the surface of the bubble.

I
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ON THE NONLINEAR VORTEX-RAYLEIGH WAVE INTERACTION

IN A BOUNDARY-LAYER FLOW

by

S. N. Timoshin and F. T. Smith
Department of Mathematics
University College London

Gower Street
London WC1E 6BT

United Kingdom

Nonlinear interaction between instability waves and vortical mean flow has been
experimentally identified as one of the major routes for laminar-turbulent transition in
large Reynolds number flows. In the present theoretical work, the vortex-wave
interaction (VWI) stemming from the development of 3-D Rayleigh instability modes in
an otherwise 2-D boundary-layer flow is considered. The dominant mechanisms of the
vortex-Rayleigh wave coupling has been revealed recently in the studies of flows with a
strongly 3-D spectrum in the wave perturbations (Hall and Smith, 1991; Brown et al.,
1993; Smith et al., 1993). Briefly, the 3-D forcing of the mean flow arises from the
action of the Reynolds stresses in the vicinity of the critical layer. Alterations in the
mean flow in turn bring about modulation in the wave amplitude through the
coefficients in the Rayleigh equation. The VWI starts as a sufficiently high (but
generally small in real terms) value of perturbations, when the two processes become
mutually related.

Our prime interest here is in the VWI with initially wek three-dimensionality of
the wave motion, which is often observed in various applications. The analysis is
performed for large Reynolds number R.. The large values of R imply, as usual, a multi-
zoned splitting of the flow field in the normal direction and also a multi-scaled
dependence on the streamwise coordinate. In igrticular, the wavelength of the nearly-
neutral Rayleigh modes is estimated as .- ' in appropriate normalized variabke,,
The chatritic streamwise and crosswise length scales of the VWI region,
and R-' respectively, follow from the linear stability theory. The first of them is
defined by the nonparallelism of the basic flow, while the second initiates effects of the
spanwise variation in the wave amplitude. The level of the .ge-pressure perturbations
sufficient to provoke the nonlinear VWI is obtained as R- 7 . The vertical structure
of the solution comprises the main part of the boundary layer, the linear viscous critical
layer in the middle of the flow, the narrow buffer zones surrounding the critical layer,
and the near-wall Stokes layer. The final relation for the wave amplitude follows, from
the match of asymptotic solutions in the various regions, in the form of a nonlinear
integral/partial-differential equation with complex coefficients. The basic properties of
the solutions for the amplitude equation (including secondary instability, finite-distance
breakdown, receptivity phenomena, etc.) are investigated numerically and analytically.
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LAGRANGIAN COMPUTATION OF 3D UNSTEADY SEPARATION

by

Leon van Dommelen
FAMU/FSU College of Engineering

Tallahassee, Florida 32316-2175
USA

The predicted structure of three-dimensional unsteady separation has not yet
been verified numerically. Based on the predicted structure, this paper explains why
Lagrangian computations are needed for the verification. It also discusses various
difficulties encountered in such a computation that are associated with the presence of
large Courant numbers and sizable mixed derivatives. The performance of a number of
ADI timestepping procedures, as well as of iterative procedures is considered
analytically. It is shown that two ADI procedures, the one due to D'Yakonov and a
'one-factored' scheme can handle the constraints of a Lagrangian computation. Both
are only first order accurate in time, but can be extended to higher order using passive
extrapolation. It is shown numerically that the factorization errors in the D' Yakonov
scheme can be kept within limits using an extrapolation based time step adaptation. It
is further shown that two iterative procedures are suitable for a 3D Lagrangian
computation; a three-dimensional extension of the scheme used by Van Dommelen and
Shen, another an ADI procedure. Both allow an efficient multigrip based enhancement.
The choice of the unsteady boundary layer configuration to be verified is discussed.
The issues of coordinate singularities and transition to the two-dimensional case are
addressed. Numerical results will be presented at the conference.
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ANALYTIC METHODS FOR THE STUDY OF

ADIABATIC COMPRESSION OF A GAS

by3

A. F. Sidorov
Institute of Mathematics and Mechanics

Ural Branch of the Russian Academy of Sciences
Ekaterinburg 620219

Russia 3

New classes of exact solutions of the complete non-linear equation of velocity
potential for the unsteady spatial case are constructed. Using the results, the process of
shock-free unlimited compression of polytropic gas, which at some initial instant has
constant density and pressure and is at rest within either a prism or a cone-shaped
body, is investigated. The laws of unsteady impermeable piston motion, which provide
unlimited compression, are constructed. The degrees of accumulation of energy for such
a compression are found. It is shown that the two-dimensional and three-dimensional
processes of compression considered, in the case of easily-compressed cases with
1 < -y < 2 (-y- adiabaiic index), are more energetically advantageous than the processes
of shockfree spherical compression, in creating very large gas densities. I
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ASPECTS OF TRANSITIONAL-TURBULENT SPOTS IN BOUNDARY LAYERS

by

Rowena G. A. Bowles, Bharat T. Dodia, and Frank T. Smith
Mathematics Department
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Nonlinear effects on the free evolution of three-dimensional disturbances are to
be discussed theoretically, these disturbances having a spot-like character sufficiently far
downstream of the initial disturbance.

For a very wide range of initial conditions, an inviscid initial-value formulation
based on the three-dimensional unsteady Euler equations applies, in a first phase,
allowing considerable analytical progress on the nonlinear side, as well as being
suggested by much of the experimental evidence on turbulent spots and by engineering
modeling and previous related theory. The time and length scales here are relatively
short, of orders b'*/U:, b*, respectively, for a free stream speed Uo and boundary-layer
thickness 6P. The large-time large-distanclavior then is associated with the two

major length scales, proportional to (time) 'and to (time) in nondimensional terms,
within the evolving spot. Within the former scale, the Euler flow exhibits a three-
dimensional triple-deck-like structure, even though inviscid; within the O(time) length
scale, in contrast, there are additional time-independent scales in operation as described
later. Most effort has been made on describing the trailing edge of the spot, between
the two length scales above. As the typi al disturbance amplitude increases, nonlinear
effects can first enter the reckoning in edge layers near the spot's wing-tips. The
nonlinearity is mostly due to interplay between the fluctuations present and the three-
dimensional mean-flow correction which varies relatively slowly. The resulting
amplitude interaction points to a subsequent flooding of nonlinear effects into the
middle of the spot. An interesting alternative means for nonlinear effects to first enter
the reckoning, directly via the middle, leads to the same conclusion concerning
nonlinear flooding. In either case, it is suggested that the fluctuation/mean-flow
(vortex) interaction becomes strongly nonlinear, substantially altering the entire mean
properties in particular. A new strong interaction between the short and long scales
present, involving Reynolds stresses, is also identified. This interaction extends to the
O(time) length scale covering the majority of the spot.

Later, on global time and length scales of orders 1*/UL and airfoil chord I*
respectively, a second phase is encountered in which the short-scale-long-scale
interaction takes on a distinct form. Here viscous-inviscid interplay matters
substantially. As in the earlier stage, the three-dimensional nonlinear disturbances are
traveling at speeds comparable with U:,, so that conventional viscous linear instabilities
are smaller and lag far behind, with their speeds c U*. In this second phase the three-
dimensional boundary-layer equations cover the spot over the airfoil scale, but the
solution is fully coupled with that of the Euler equations locally, by means of Reynolds-
stress forces acting in the former system and vorticity control in the latter system. The
additional significance of viscous sublayer bursts is also to be noted, along with
comments on links with experiments and with direct numerical simulations, and on
further research.

Support from S.E.11C. and A.RlO is gratefully acknowledged.
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3 ON TWO-DIMENSIONAL, INCOMPRESSIBLE LAMINAR BOUNDARY

LAYER SEPARATION NEAR AIRFOIL LEADING EDGES

* by
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Iowa State Univerity
Ames, Iowa 50011

USA

Numerical solutions are presented for high Reynolds number two-dimensional
laminar viscous flow past a parabola at angle of attack. This geometry models flow past
thin airfoils with parabolic leading-edges, in the limit as the airfoil thickness becomes
small. Steady solutions are computed using an interactive boundary layer algorithm for
flows past bluff bodies. Construction of the bluff body formulation will be presented.
The interacting boundary layer algorithm employs the Veldman-Davis quasi-
simultaneous algorithm, block inversions within the boundary layer, coupling of upper
and lower surfaces of the parabola, eight embedded vertical grids and multipleSRichardson extrapolations in all coordinate directions to achieve grid independence.
Marginal separation solutions are computed over a range of angles-of-attack and
Reynolds number. While the overall qualitative results of the classical marginal
separation theory are confirmed, several contradictions in Reynolds number scaling
suggest that slight alterations to the theory may be needed. These discrepancies may
be due to finite Reynolds number effects or may require some modifications of the basic3- assumptions of marginal separation theory.

Unsteady classical boundary layer solutions are also computed for flow past a
pitching parabola. The unsteady boundary layer equations are written usmig a nonlinear
steady-unsteady decoupling which yields a semi-similar flow at the vertex of the
parabola. The numerical algorithm is a fully implicit finite-difference method, second
order accurate in all coordinate directions, and uses block tri-diagonal inversion.
Numerical solutions are computed for flow past a uniformly pitching parabola. It is
found that a regular unsteady flow reversal develops. However, well before the solution
reaches the anticipated Van Dommelen singularity, high frequency oscillations are
encountered. It is shown that these oscillatory solutions correspond to unstable
boundary-layer modes predicted by Cowley, Hocking and Tutty (CHT). Qualitative
comparisons are made with predicted CHT instability behavior. Quantitative
validation of predicted wavenumber and mode shapes are made for both a finite
wavenumber non-asymptotic analog of the Cowly, Hocking and Tutty theory as well as
the full numerical boundary layer cu.nputations. The significance of the presence of
CHT - modes in an unsteady boundary layer computation is that they render the

-- problem ill-posed in time, in the sense that it should be impossible to obtain grid-
independent computations of the unsteady boundary layer equations in the presence of
flow reversal. This result strongly suggests that details of transition and turbulencei should be addressed in unsteady flow separations.

U
i
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ASYMPTOTIC MODEL OF RESONANT TRIAD

EVOLUTION IN BOUNDARY LAYERS

by3

A. P. Khokhlov
Moscow Institute of Physics and Technology
Zhukovsky, Car-agina, St., 16, Moscow Region

Russia 140160

Resonant interaction of Tollmein-Schlichting waves can, under certain
conditions, play an important role in boundary-layer transition to turbulence. The
possibility of a strong connection within a triad of normal modes meeting a condition of
nonlinear resonance was proposed by Raetz (1959) and theoretically supported by many
authors (Craik, 1971; Zelman, 1974; Volodin and Zelman, 1978; to name a few). The
general approach to this problem is based on the assumption that the amplitudes of
interacting waves are so small that nonlinear corrections containing resonant terms can
be included in a higher approximation. Then the condition of solvability of the second-
order approximation gives a system of equations governing the triad evolution. The
background on this problem and detailed discussion of some results obtained are I
presented by Craik (1985).

The present work is devoted to investigation of the resonant interaction at higher
levels of amplitudes, at which previously developed techniques fail The analysis is
performed in the framework of free-interaction asymptotic theory, which was first used
for this purpose by Smith and Stewart (19 8 7 ). They examined, on rigorous
mathematical grounds, the resonant-triad problem by the generally adopted method
discussed briefly above. In the context of the governing system, we take the time-

dependent three-dimensional boundary-layer equations with self-induced pressure
controlling the flow in the lower layer of the triple-deck asymptotic scheme. The details
of the deviation of this system can be obtained from in the monograph of Sychev et al.
(1987).

If the initial amplitudes of the disturbance are small, the nonlinear regime occurs
after a long stage of linear amplification, i.e. far downstream from the position of the I
lower branch of linear stability neutral curve. The movement downstream results in an
increase of frequency and phase speed in the free-interaction-theory units. Therefore, in
order to alleviate the problem, we apply the high-frequency limit of the theory as was I
proposed by Smith and Stewart (1987).

Order-of-magnitude estimates show that resonant interaction occurs between
normal modes with the same phase speed. For this reason, it is suitable to represent
the asymptotic model of the problem in terms of a small parameter e equal to the
inverse phase speed. In the frame of reference moving with the disturbances, the time t
and cartesian coordinates (x, y, z) have the following scales:

t = (e2t, e213t 2), x = (exl, e - 1/3x2 ), Z = (IEz2, C- 1/ 2z2 ) , 3
y = (eyo,e 1- IyI, 1  +C 1/3 y2)" (1)

I
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The asymptotic structure of the solution is shown schematically in Figure 1. There are
i three characteristic regions in the y-direction: (i) the main inviscid region where

Yl=0(1), (ii) the Stokes layer where yo =0(1), and (iii) the critical layer where
y2 = 0(1) and where inertial and viscous foices are comparable.

In agreement with the above consideration, the phase speed is constant at
leading order and hence the solution does not depend on the "fast" time t1 . The
nonlinear interaction leads to the growth of disturbances on "slow" scales, the order ofI which is determined from the condition that the motion within the critical layer is
unsteady with respect to the "slow" time tq, i.e. that unsteady effects caused by the
nonlinearity are essential to leading order. This condition also predicts the order of the
typical pressure amplitude as Ofe10/3). The soluti0 theressure is expanded in an

asymptotic power series of two small parameters e and J produced by the critical-
and wall-layer contributions, respectively,

P(xl, ZI, x 2, z2 , t 2) = e 0/ 3 [P1 + e4/ 3P 2 + e2P 3 + e8/ 3P 4 +'" "]"

This representation also uniquely determines an asymptotic expansion for the velocity
components. Substituting it into the main system, we obtain a number of problems for
the terms of the expansion which are reduced to a successive set of integro-differential
equations for the pressure functions P.6 =1, 2, ... .). In the main approximation we
have

= +0 d edC (2)Jff API(fx 2,Z 2 ,,t 2) (l +(z i -. )2]

The solution of (2) can be written as a superposition of eigenfunctions corresponding to
T-S waves with various orientations,

P1 A(x 2, z2, t2, 0)"es(¢), S = xcos +zisin#. (3)

The amplitude function A is determined after analysis of higher approximations. The
problem for P is similar to (2), but contains a forced term incorporating linear and
quadratic provucts of the first-order function P The condition of solvability of the
second-order problem yields the form of equalions controlling the behavior of the
amplitude function A. The analysis of these equations shows that the general solution
disintegrates, with separate triads {A(t 0 ), A(¢ 0 ±•r/3}, (14oI < /6) developing

independently of each other. Moreover, the 00-component of a triad does not undergo
the influence of the other two components, so that the triad evolution is essentially
linear. Hence the resonant-triad problem in the amplitude range of interest here is
equivalent to an investigation of the secondary instability of the boundary layer with a
superimposed T-S wave, as proposed by Herbert (19841. For example, consider the
triad with 00 = 0. Denote A(#0) = A0, A(:k v/3) = Ak. The evolution If such a triad is
governed by the following system of equations,
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EA+A]AO=O,U
[ +1 +a •14 A+,-- (4)I

i 2 i8gi (t2-t~)2P(-'(t2-4)3?1 ~ +2t-2d~
-00

The left-hand side operator describes the downstream propagation, while the I
right-hand side is responsible for interactions between the waves. If the amplitude of
the two-dimensional wave is constant, A0 = constant and the solution for the
subharmonics A +, - can be sought from

A + = a + ep(ia1 x2 + if 1 z2 -iw 1t2 ) A- =a- 0+ial~x2 -ifl~z2 + iw~a4t

Substitution into (4) allows one to obtain the eigenrelation between the
parameters al, fil,&l,

Numerical calculations of the relation were conducted for exactly half-frequency U
subharmonics, for which a, + w, = 0 (it is taken into account that the frame of reference
moves downstream with fiked velocity). The maximum spatial growth rates -Ima0)
are plotted in Figure 2 versus the amplitude of the two-dimensional wave. The i
maximum of the growth is chosen among the waves with real values of jll. For
comparison, the results of experimental measurements of Kachanov and Levchenko
C1984) (converted data from Figure 23 of their work) are also shown in Figure 2.

aking into account that in this case the small parameter e is dose to 1/3, we can see
the good agreement between the experimental and the theoretical results.
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Figure 1. The structure of disturbance field within the lower layer of the triple-deck
asymptotic scheme.
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Figure 2. Maximum yowth rates as a function of the amplitude of two-dimensionalI
wave. SYM Is correspond to eqxpeiments by Kachanov and Levchenko
(1984).
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ON DRAG AND THRUST FORCES IN AN IDEAL FLUID FLOW

WITH CONSTANT VORTICITY

I by

V. S. Sadovsky
Central Aerohydrodynamic Institute (TsAGI)

Zhukovsky-3, Moscow Region
Russia 140160

In the class of Chaplygin flows of an ideal incompressible fluid considered here
are particular viewpoints of flows past some bodies from the forces acting on them.

1. Flow with constant vorticity w is considered in detail in an entire flow
upsteam of a rectangular step. The initial velocity profile (as x--+-oo, y > O) is linear:

i u =Vo+y, v=0,

where uv are the velocity components along they xy axes respectively. Here all the
quantities are normalized by the step height and the vorticity value (-w)>0. The
stream function lk(xy) satisfies the Poisson equation with unit right-hand side and is
expressed as

I -y2/2+F

where F(xy) is a harmonic function. Using a conformal mapping of the flow region
z=x+iy onto the upper half-plane t=f+ii, and the Poisson integral, and
reconstructing the harmonic function using its values on the real axis, we obtain the
following exact solution for IF:

0

2 265 iV j y2(s)ds

The fumction y(s) in the integrand is known, and the mapping z(t) is known as well.

Analysis of the velocity component u for x < 0, y = 0 shows that at any value of
the free parameter Vo > 0 upstream of the step, there is a critical point x0 < 0 where the
velocity goes to zero. It should be mentioned that on the vertical side of the step there
is also a critical point 0 < yo < 1. At these points the fluid streamline is located which
separates the unknown region of reversed flow in the vicinity of the step base from the
externalflow. It is natural that in the reverse flow region and in the external flow the
vorticity values are equal. It is found that as Vo-+0 the critical point x0--+-oo, and

I yo--0.639. Without any computation, it is evident that in this case the step experiences
a thrust force.

Determination of the force magnitude was performed by integrating the excess
pressure (on the basis of a Bernoulli integral) along the step height. l the resulting
force is normalized by the step height and the dynamic pressure of the flow at y = 0,
x-- -oo, we have the drag coefficient C_ equal to

C.2 = W - e13.

The quadratic dependence of C2 on & is an exact analytical result, and the coefficients
in M are calculated as defined limit integrals. It is seen that at any value of the
vorticity W < 0, the step experiences a thrust force. Obviously, complete reversal of the
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flow results in the presence of a base drag on a backward facing step, the magnitude of
which is

C-. D -+ 0/3.I

2. The solution for flow past a step is constructed and investigated under the
assumption that in the vicinity of the base there exists a region of reversed flow with
vorticity fl, not coincident with the vorticity w of the main flow. A stream function T
is represented analytically and differs from the above expression by an additional
logarithmic potential of area with a given density. The streamline, separating the main
stream from the reversed flow region with vorticity f) is an integral equation solution
and is determined iteratively. It is shown that at arbitrary values of w there exist
solutions, where the vorticity A in the recirculation zone is either greater or smallerthan w (for different values of V.). At the same time the drag (thrust) coefficient C.
does not depend on the value of 0 and is determined by the above expression:

0, =zW-z0/3. I

3. The flow about a particular body is investigated, namely a finite-length wedge I
with an angle a = 60', at zero angle of incidence where the freestream vorticity is

W = O sign(y).

As in the case of the flow past a step the stream function solution is determined
explicitly using a conformal mapping z(t) of the upper half of the flow region in the z
plane on the upper half-plane of the intermediate variable t. The analysis reveals that,
downstream of the wedge for wo < 0, there is always a region which is symmetric with
respect to the x-axis, the spread of which along the x-axis grows as Iwojis increased.
Upstream of the body a recirculation zone appears only if wo < wo., where wo. is a I
certain number. As in the case of the step, the Chaplygin-Zhukovsky condition is not
met at sharp edges. The force magnitude is determined by integrating the excess
pressure over the entire wedge surface. The dependence of the drag coefficient on wo is U
quadratic and appears (with the base height of wedge used as a reference length) as:

CZ = 0.01WO0.008w0
2 .
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ASYMPTOTIC ANALYSIS OF SMALL-DISTURBANCE

PROPAGATION IN MIXTURES

I by
N. S. Bakhvalov and M. E. Eglit

Mathematics and Mechanics Department
Moscow State University
Moscow, Russia 119899

I Mixtures of liquids and gasses are considered as nonhomogeneous media with
periodic or stochastic structure. Let E denote the ratio of the nonhomogeneity typical
scale to the typical scale of the processes under consideration. If e is small, the original
medium equations may be approximated by averaged equations corresponding to a
certain averaged homogeneous medium. The method of homogenization can be used,
which is described in Bakhvalov and Panasenko (1989).

Here the averaged equations are derived and rigorously proved for mixtures
characterized by certain additional small parameters besides e. In particular, fluids are
considered with small region 7y of the properly scaled viscosity and compressibility
coefficients or with the smalI ratio A2 thermoconductivity and compressibility
coefficients. The averaged equations for e--O, 7.--O (i = 1,2) are in general different

depending on the relations between the orders of dhe small parameter values: e < 7yi, or
7y < e, or e 7-i For e 7i, the averaged medium is a medium with memory.

For non-thermoconductive mixtures (72=0) with small viscosity (t-a-0) and
e < 71, the averaged homogeneous medium is isotropic independently of the original
mixture structure, while for e < 7T and e ,71, the averaged medium is in general
anisotropic, and the sound progaion velocity depends on its direction. This resultwas obtained in Sandraiov (1987) for periodic media. In Baklhvalov and Eglit (1992), it

was proved that for mixtures with stochastic structure, tle. averaged_ equations for
,E 4 yare isotropic, and th I d velocity is equal to (A u where are the

mathematical expectations of A- , p, while A is the compressibility coefficient and p is
the fluid density.

For inviscid fluids (71=0) with small thermoconductivity (72-p0) and periodic

structure, the averaged equations when e--40, - are, in general, anisotropic for all
relations between e and 72.

For 72 c e, heat conduction does not influence the form of the averaged
equations. So as 6--0, 72--0, 72 c e, the processes may be regarded as adiabatic. But
for 72 > C the char;ersc time of the processes under consideration is large enough for
temperature to become uniform throughout the cell of periodicity. The sound velocities
in this case are smaller than those for 72 < e by a constant factor for all directions.

The question is also studies as to whether or not the averaged equations are still
valid when properties of the mixture components (e~g. densities or viscosity coefficients)
differ strongly or when the concentration of a certain component is small. Certain
conditions necessary on the concentrations compressibility coefficients, density ratios are
formulated for the averaged equations to be of the same form.
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THE ASYMPTOTIC THEORY OF
HYPERSONIC BOUNDARY-LAYER STABILITY

I by
V. N. Trigub and S. E. Grubin

SINTECO sr
Via Mola Vecchia 2A 03100

Frosinone, ItalyI
The linear stability of the hypersonic boundary layer is considered in the context

of the local-parallel-flow approximation. It is assumed that the Prandtl number lies in
the range 1/2 < a, < 1 and the viscosity-temperature relation is a power law function
according to p/poo = (T/Too)w. An asymptotic theory in the limit MO-+w is
developed.

Smith and Brown (1990) corzicdered the case of Blasius flow and Balsa and
Goldstein (1990) investigated the mixing layer; they determined that for M.o large,
disturbances of the vorticity mode are located in the thin region between the boundary
layer and the external flow referred to as the transition layer. A model gas having
S= 1, w = 1 was used in both studies. Here it is demonstrated that the vorticity mode
also exists for a gas with 1/2 < o <, w < 1, but the structure and characteristics are
considerably different. Nomenclature is discussed, i.e. what an acoustic mode and a
vorticity mode are. Numerical solution of the inviscid instability problem for the
vorticity mode are obtained for helium and compared with the solution of the complete
Rayleigh equation at finite Mach numbers (Figure 1).

The limit MO-ooo in the local-parallel approximation for the Blasius base flow is
considered in order to understand the viscous structure of the vorticity mode. The
viscous stability problem for the vorticity mode is formulated under these assumptions.
The problem contains only a single similaity par R*, which is a function of the
Mach and Reynolds numbers Mco, R = (u0op00x/lk0) , the temperature factor, Tf and
wave inclination angle, 0, defined by:

R* = RcosoCl(Tf)e", e = 2/(7 - 1)Mo, v = (1 + w)/2u + (1 - w)/2.

The problem is iolved numerically for helium. The function C (T ) is shown in
Figure 2. The universal upper branch of the neutral curve obtained as a result is
represented in Figure 3. The asymptotic results are compared with the numerical
solutions of the complete problem (Figure 4).

In the long-wave limit, the vorticity mode starts to interact with the acoustic
disturbances in the boundary-layer region. The general solution of the linear problem in
the boundary-layer inner region is analyzed numerically and analytically. This solution
is matched with the long-wave vorticity-mode solution near the transition layer. As a
result, the inviscid instability problem for a hypersonic boundary layer is formulated.
The analytical solution of this problem is found and analyzed. Different limits of the
solution are considered, and the universal forms of the dependence are obtained. A
similarity parameter, s = (2ou-1)/(1 +0(1 - w)1 +w)), is found which is a function of the
Prandtl number and the power in the viscosity-temperature law. A significant change

of the solution behavior is noticed when this parameter passes a critical value of s=1f2
The asymptotic structure of the amplification rate, as a function of the wave number, is
described and discussed. The results are an extension of thery of Grubin and TrigubI

I
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(1993a, 1993b). 3

Non-parallel flow effects are also studied. It was found that the vorticity mode is
highly sensitive to non-parallel effects induced by transition layer curvature. The
curvature produces a centrifugal force field which influences the density fluctuations in
the transition layer. (The mechanism is similar to Rayleigh instability). The
asymptotic problem statement is formulated and numerical solutions are obtained for
helium.
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THIN SHOCK LAYER THEORY WITH INTERACTION.

MARGINAL REGIME.

* by

V. B. Zametaev
Central Aerohydrodynamic Institute (TaAGI)

Zhukovsky-3, Moscow Region
Russia 140160I

This study is concerned with hypersonic flow of a perfect inviscid gas past the
almost-plane butt-end of a circular cylinder, which is aligned in the direction of the
stream. The analysis is carried out using asymptotic methods in the limits MIvO-+oo
and -j = Cp/C,--1. It is well known (Hayes, 1959) that the shock wave in front of the
cylinder is almost perpendicular (Figure 1) to the oncoming stream in these
circumstances and the solution of the Euler equations is incompressible behind the
shock.

Consider a small distortion of the plane butt-end surface, defined by

Y_ =e1 / 2g(r, h), E=-1, 2 (1)~' + 1 (- y + ')-'Lo

where e--ý0 as Mgo--oo. y--*l. A distortion height O(e1 /2 ) is sufficient to provoke a
nonlinear response in the shock shape. Asymptotic exasions of solution behind the

shock are expressed as follows:

vI = C1/ 2uo(r' Y) + eul+''', p + epO + e3/2p1+

vy =,,(r'uo + vo) + e3/ 2(g'(r)u- + v1 ) + (2)

I P= -+P + e+ .ry,=,'%(,) + f+. ,

Y = e - '/2(y_ J/- (r).

I Here r is the radial variable in the plane of the butt-end and y measures distance in the
normal direction. It is possible to formulate a problem for the leading order
approximation f4(r) of the shock shape in the spirit of Hayes (1959), and it can be
shown that fo satisfies

I~ i+ [fo- (rg)j; + r =0. (3)

I The initial condition for equation (3) does not follow frm the local analysis and must
be determined through external considerations. Hayes (1959) has proposed a criterion
to choose a unique solution. This equation has a singular point at = -1 (implyingI

I
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the occurrence of a sonic point immediately behind the shock wave), and requiring I
solution smoothness at this point permits a choice of the appropriate solution. The
physical sense of this additional condition is obvious; the flow near the axis is subsonic
and thus the influence from the downstream flow must be considered.

The aim of this paper is to study the solution of equation (3) for different
distortion shapes g(rh), using the Hayes (1959) criterion. In particular, we consider the
case where the butt-end contains a central body of variable height h. First the shape
contains a central cavity defined with h = 0; as h increases, a central body rises from the
cavity. The exact studied function g(r, h) is

g= 7r2 (1-r) + he-4r. (4)

It is found that at small h, the sonic point is near the cylinder corner, but as h
increases, the singular point moves slightly toward the axis. It is found that the
solution defined elsewhere exists within the following range of h:

h = [0, 2.114]. (5)

There is a critical value of h at h. = 2.114. At the critical value of h, a second sonic
point appears closer tothe axis of the body. From Figure 2, it may be inferred that in a
small vicinity of the second singular point, the shock wave decreases linearly to t• = - 1
and then rises linearly. Consequently, this is a marginal situation. Some curves for
different values of h are given at the picture (Figure 2). For h > h., the solution
develops a singularity which is characterized by infinite shock curvature.

It is worthwhile to study the solution of the Euler equation near the second sonic
point as h---h, to better understand a bifurcation process of solution. Consider a
characteristic size 6 near a sonic point with Ah = h - h., and consider the asymptotic
structure of solution in the limits 6--0, e--i0. The pressure disturbance behind the
shock is Ap - e6, it is invariant toward the surface and gives rise to Av' - eb in a thin I
layer of potential flow. The vertical comportjyt of velocity in the main body of layer
betwe the shock and the body has Avu ~ e , and corresponding pressure disturbance
is 0( '/6). It is easy that initial pressure disturbance is comparable to an

induced one when b-O(e ), and it is necessary to take an interaction process into
account. As a result we find the following interaction problem for the shock slope O(R),
and the velocity perturbation of a near wall potential jet A(R):

200'(R) - 0 - 2dR = A"(R) (6)

- A = 2(0-kR) (7) g
O=kR- (-RaI A--, R-i-oo (8)

O=k+R+ ... (9)

A= -2(k+ -k)R+ ... + oo. (10) I
I
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The parameter r is a scaled increment to the critical height h., while the constants a,
d, -y, k, k are known values. The problem defined permits a decreasing exponent as
R---oo; this fact means a propagation of disturbances upstream from the studied sonic
point and reduces the problem to a class of interaction ones. This problem is studied
numerically and a new critical value of r is found as a result.
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UNSTEADY FLOW ON THE LEADING EDGE OF AN OSCILLATING AIRFOIL

by

I I. G. Fomina
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Zhukovsky-3, Moscow Region
Russia 140160

UFrom experimental investigations in subsonic flow, it is known that in subsonic
flow a small separated region (a so-called "short bubble"), forms near the leading edge
of a thin airfoil at incidence. This region of reversed flow exists up to a critical value of

11he angle of attack a; aninc rease of a beyond the critical value leads to bursting ofdthe
bubble and a dramatic change in the whole flow field. RPban (1981, 1982a) and,
independently, Stewartson, Smith and Kaups (1982) have provided a theory of steady
flow at the high Reynolds number which applies near the parabolic leading edge of a
thin airfoil at incidence. The analysis was based on the asymptotic solution or the
Navier-Stokes equations using the method of matched asymptotic expansions. It was
shown that the problem of the free interaction between the boundary layer and the
external inviscid flow could be reduced to the solution of the integro-diferential
equation

A2 (x)_x 2 -2a=o = A"(s)ds (1)

l for the function A(x), which is proportional to the skin function; here A is known
constant. The parameter a0 expresses a dependence of the solution on the f-stream

i velocity, the leading edge radius of the airfoil, and is a linear function of the angle of
attack of the airfoil. Equation (1) is called the fundamental equation of the marginal
separation theory.

The aim of this work is to investigate unsteady flow in the free-interaction region
of the leading edge of a thin airfoil. It is known from Rnban (1982b) and Smith (1982)
that such a problem can be reduced to a solution of equation which is the unsteadyI analog of the fundamental equation (1)

StA"(s,t)ds Z OA ds
A2(x, t)-x2-2a(t)= (Bx)1 1 2  0 (x8)1/4, (2)

where A and p are known constants.3 A harmonic airfoil oscillation is considered with amplitude a(t) given by

a(t) = + coowt. (3)

I The average incidence an, the amplitude of oscillations o and the frequency wi are
independent parameters o the problem.

To solve the problem, two methods are considered. In the first approach, the
function A(x, t) is represented as a Fourier series according to

I
I
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A(x, t)= E An(x) exp(inwt), (4)

n1= -oo

where the An(x) are complex functions to be determined. Considering only the first mn
lowest harmonics (n = 0 ± 1, . . . m) in equation (4) and substituting into (2)
together with (3), we obtain a set of nonlinear integro-differential equations for the
An(x), viz.sI

Do-x2-2ao=0 (s)1/2' n=OI

D Ar9 Aj'(s)ds A _ A(s)ds n=1
- (s-x)1/2 -J (x-s)1/4

00 A"(s)ds X An(s)& !

D=A 1/U(2 - inwp J /Rs~4 1 n=2,... I, M. (5)

Here 3
D 0 =A 2 +2 • AkAk, n=0

k=1

n3-1 in-n
Dn = 2A0 An E AkAn-k + 2EAk+n, n-i Im

k=1 k=15

where Xk(x) is the complex conjugate function of Ak(x).

The system (5) is solved numerically. The infinite limits in the integrals are byfinite values (X - N, X A' beyond which asymptotic approximations are used for the I
An(x). The integrals are calculated by using the trapezium formula with a uniform step

given by Ax=(X wh -X e )/N, except in the intervals x<x<x+2Ax and
gi2Axve < s<x wheret (Xtions are performed analytically. a

This procedure results in a nonlinear complex algebraic equation system of order
N x m. This system can be solved by Newton's method, but this requires a large
amount of computing time. Therefore, another iteration method is proposed, where on
each iteration A is determined from the nonlinear equation system of order N using
Newton's method, and An(n k 1) are determined from the complex linear equations also,
of order l. As a result the dependence of separation angle of attack a; and that of I
bursting ab on o and w are obtained.

The second approach considered here is aimed at a derivation of explicit
formulae for a and 4.To this end, an asymptotic solution of (2) is obtained for small
amplitudes of bscillation a. In this case leading order term in (4) may be expressed inthe form

A0 (x) = A00(x) + 02 A0 1(x) + (6) I
I
I
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and the leading-order approximation for (2) coincides with (1) and serves to determine
A (x). Next a linear equation for Al(x) is obtained where the perturbation is assumed
to-he of the order of a. The solutioin may be obtained using a Newton technique. In3 order to determine the shift aO1 in incidence

ao = aM + o2 a0l,

a quadratic equation must be solved as well.

A second objective of the work is the solution of the receptivity problem for the
boundary layer on the leading edge of a thin airfoil which is subject to oscillations of the
surface. In view of the simplicity of equation (2), the generation of Tollmien-
Schlichting waves and their evolution in the boundary layer may be easily investigated
for essentially nonparallel flow and even for the flow with separation.
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AN ASYMPTOTIC APPROACH TO VORTEX-BODY COLLISIONSi

by

A. T. Conlisk 3
Department of Mechanical Engineering

The Ohio State University
Columbus, Ohio 43210

The collision of concentrated vortex structures with solid boundaries is common
in many problems of technical interest. The focus of the present work is on the initial
stages of the collision of a rotor-tip-vortex with a helicopter airframe. Based on a
combination of experimental and analytical/computational work, a coherent view of the
initial stages of the collision process may be identified. From the tip vortex motion, it
is shown that modifications to the colliding vortex structure must occur locally near
the impact point due to the development of a finite radial velocity at the assumed
vortex core radius. Moreover, the impingement of the vortex leads to separation of the I
viscous flow underneath it; a reversed-flow eddy develops and grows in time and
experiments show that boundary layer fluid will eventually be ejected into the

To conform to the geometry of fundamental experimental measurements, the
airframe is assumed to by cylindrical, and the image of the vortex in the airframe is
calculated by a semi-analytical technique involving a double Fourier Transform. A I
typical vortex trajectory compared with cxpimental data is depicted in Figure 1(b).
Previous results indicate that a simple Rankine core is sufficient to predict both the
vortex position and the pressure on the top of the airframe in the time regime prior to
impact. The impingement of the vortex induces a very strong adverse pressure gradient
on the airframe under the filament which results in a very strong pressure suction peak
(Figure 1(c)). Numerical results indicate that in the initial stage of the collision, the
initially axisymmetric vortex core structure must be modified due to the development i
of a finite radial velocity at the assumed vortex core radius. This is consistent with
previous experimental measurements which indicate a rapid flattening of the vortex
core just prior to impact. This rapid flattening apparently begins when the vortex is i
still outside the boundary layer.

It is well known that computations of solutions to the Navier-Stokes equations
will not normally resolve the short length and time scales which arise in the viscous flow I
induced near the airframe as the vortex approaches. Consequently, the boundary-layer
equations are valid as the Reynolds number Re-Po are solved. Because of the strong
adverse pressure gradient induced by the vortex, the viscous flow under the vortex
separates, and a complicated secondary flow develops in the form of a complicated
three-dimnsional eddy. The geometrical characteristics of the eddy may be elucidated
through the calculation of three-dimensional streamline patterns. The viscous flow
calculations completed so far are consistent with the development of a singularity in the I
boundary layer equations. The next step in the calculation of the viscous flow on the
airframe involves the calculation of solutions to the three-dimensional interacting
boundary layer equation. This work is in progress.

t Sponsored by the U. S. Army Research Office. I
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- STUDY OF NONSTATIONARY PROCESSES OF A

STRONG VISCOUS-INVISCID INTERACTION

- by

Igor L Lipatov
-- Central Aerohydrodynamic Institute (TsAGI)

Zhukovsky-3, Moscow Region
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Strong interactions between a laminar boundary layer and the external
supersonic flow may arise when boundary layer separation takes place, when large
disturbances influence the laminar boundary layer, and in other situations. Processes of
viscous-inviscid interaction may occur in local or in global zones, with the longitudinal
dimension accordingly being either much smaller or compatible with characteristic
length of the body.

In this paper a review of local nonstationary viscous inviscid interaction will be
given, but the main attention is devoted to studies of global nonstationary interactionI processes. Processes of interaction may lead to the propagation of upstream
disturbances or to the influence of downstream flow through the subsonic flow in
boundary layer. Such effects may change the position of laminar-turbulent transition as

-- well as the surface pressure and heat transfer distributions, thus altering the
aerothermodynamic characteristics of an airplane.

Investigations of interaction processes conducted earlier were mainly devoted to
the steady flows (Stewartson, 1955; Hayes and Probstein, 1959; Mikhailov, Neiland and
Sychev, 1971), but in practice there is a need to deal with nonstationary processes of
interaction. In this paper results are given for nonstationary viscous-inviscid
interactions. It is supposed that the ne-wall flow is described by the boundary layer
equations, which include the pressure gradient induced by external or internal flow. It
is important to note that this gradient is not known in advance. In this situation, theU mathematical model must include an additional equation, such as that connecting the
displacement thickness and induced pressure gradient. Determination of the pressure
gradient for two-dimensional steady flow leads to an expression which contains the
Pearson integral (Pearson, Holliday, and Smith, 1958) in the denominator. This
integral diverges if the velocity on the wall equals to zero or if the wall temperature is
not equal to zero. For a convergent integral, the sign determines either a subcritical or

a supercritical flow regime, as defined by L. Crocco (1955).

Analysis of three-dimensional flow (Neiland, 1974) leads to the conclusion that a
characteristic surface exists in the xz plane (where xz are curvilinear coordinates on
the body surface) on which Pearson integral changes sign and where transition from
subcritical to supercritical regime takes place.

In this paper the results of two-dimensional nonstationary flow studies are
presented. The existence of a characteristic surface in the (x,t) plane (where x is the
longitudi coordinate and t is the time) on which an integral changes sign is
demonstrated. This new integral has the form

a( au dy,

Io

I



138

where u is dimensionless velocity in the boundary layer or in a channel, a is the
dimensionless local speed of sound, y is the coordinate normal to the wall, and a, is the
mean speed of sound. As an example, calculated results for different values of a
parameter a for a boundary layer, which is described by Lees-Stewartson self-similar
solution (M( ov, Neyland and Sychev, 1971), are presented. It is found that a
decrease of the temperature factor g. leads to a decrease of parameter a1. It is shown
that properties of the boundary layer equations must be taken into coisideration for
developing numerical schemes. I

The paper also presents numerical results of the problem pertaining to processes
of interaction induced by base pressure fluctuations. It is shown that these fluctuations
may influence the heat transfer distribution on surface upstream from the base edge.

A review of studies of flows in which transition from supercritical to subcritical
regimes takes place is also given. 3
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I VISCOUS EFFECTS ON CRITICAL FLOW

IN THE EXIT REGION OF A THIN CHANNEL

I by
Thomas C. Adamson, Jr.

Department of Aerospace Engineering
The University of Michigan

Ann Arbor, Michigan
USA

It is generally assumed that the flow velocity at the exit of a constant area tube
or channel becomes sonic whenever the exit pressure is at or below its critical value.
However, there have been reports that in some cases of flow through thin pipes, or
capillaries, the exit flow is supersonic, so that sonic conditions must have occurred
upstream of the exit plane; this would indicate the formation of a sonic throat through
viscous action. Apparently, the experimental conditions were such that the flow was
fully developed and laminar. The question arises as to whether this phenomenon may
occur when the tube is thin, but the flow is not yet fully developed. In this paper, this
possibility is investigated through the analysis of a simple channel flow.

The problem considered is that of a two-dimensional transonic channel flow with
constant cross-sectional area exhausting into a plenum at subcritical pressure. The
channel is thin, such that the ratio h of the half-width to the length is small compared
to one. However, h> 8, the dimensionless laminar boundary layer thickness at the
channel exit; thus, an inviscid core flow with boundary layers is considered.

The flow is in the transonic regime with the Mach number being slightly
subsonic at the channel entrance. The velocity component in the flow direction is
written in an asymptotic expansion about sonic velocity. The Mach number increases
in the channel as a result of the changes in effective wall shape represented by the
displ ment thickness of the boundary layer, which would nominally reach its
_maximum value at the exit of the channel, where the velocity perturbation would be

_ zero. However, it is easily shown that at the sonic exit, the gradients of flow velocity
and pressure for such a flow become infnite, indicating the need for a more detailed
analysis in a thin (in the flow direction) region adjoining the exit plane. In this innerU region, with dimensionless (with respect to channel length) thickness of order A, there
are several layers. First is the central or core flow layer, m which the flow is inviscid.
In this layer there are two possible formulations, the first of which the perturbation in
flow velocity is one dimensional, while for the second it is governed by the nonlinear
small disturbance equation for transnic flow and is thus two dimensional. The
magnitude of A for the first case is larger than its value in the second and so the first
case is considered; thus another, thinner inner region may be needed at the throat, or if
a shock wave is formed. Next, the boundary layer divides into the familiar inviscid
rotational flow layer and the viscous sublayer at the wall. Solutions for the needed
orders of approximation for the velocity components and pressure in these two layers
are those found for other transonic flow interaction problecus. The difference here is
found in the final matching with the core flow solution. First, the orders of magnitude
of h and A and indeed all the gauge factors for the velocity components and pressure
perturbations are found in terms of the Reynolds number Re. In addition one obtains a
nonlinear integro-differential equation for the perturbation in velocity (and thus
pressure).



14o U
It appears that this equation allows for the possibility of the velocity I

perturbation to change sign from negative to positive, and thus for a sonic throat to
form upstream of the channel exit, with supersonic exit flow. Numerical computations
under way will indicate whether such is the case, or whether only critical conditions can
occur at the exit. In either event, the solution gives the proper velocity and pressure
variations in the region of the exit, with no singular behavior in the functions or their
derivatives. I

I
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RESONANT INTERACTIONS AND SOLITONS IN INLET PIPE FLOW

by
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The Computing Centre

R upian Academy of Sciences
Moscow, Vavilov Street, 40

Russia 117333

The development of axisymmetric disturbances in the entrance region of a
circular pipe is studied in the limit of the Reynolds number R--K* in the framework of
triple-deck theory. The following types of disturbances are considered:

(I) Lower-branch disturbances are governed by the following system of Prandtl

I equations (Smith, 1976; Smith and Bodonyi, 1980, Bogdanova, 1982)

aU aV n aP0 o } (1
vx w --- =,, Wy u,• 1

"au + u0U + V aU _ a a2uIU X -Tx w-T-+;

with matching conditions

U-Y--*A as Y-*oo, U-Y--ýO as X--.-co, (2)

and with the pressure-displacement law

SP =2(A) (3)

I where the linear operator 2 is defined by its spectrum

2-(E) = AE, A(k) = klo(kr0)/1(kro0 ), E = exp••kX). (4)

I Here ra is the non-dimensional pipe radius, and I0 is the modified Bessel function of the
first ind and zeroth order. It is found that lower-branch disturbances can interact in a
resonant manner. Numerical calculations show that a nonlinear wave packet grows
much more rapidly than that in the boundary layer on a flat plate, producing a spike-
like solution which seems to become singular at a finite time (Figure 1). This
phenomenon is very similar to that of Peridier et al. (1991) in the structure of the
forming singularity. So resonant interactions in inlet-pipe regions may provoke the
bursting phenomena and lead to early laminar-turbulent transition in the whole pipe.

(HI) Large-sized, short-scaled disturbances (in the lower-branch scaling) are also
studied. In this case the development of disturbances is governed by the inviscid
system (1) with the viscous term omitted, and the problem may be reduced to solving asingle equation (Zhuk and Ryzhov, 1982; Smith and Burggraf, 1985; Rothmnayer and

i Smith, 1987)
OA. OA _ P+(5
IA A-• = + F(tX), (5)I X x
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where F is a given function representing an external source and the P-A law remains I
the same as given in equations (3) and (4). The homogeneous problem (3) throrgh (5)
(with F _ 0) admits solitons. The process of their formation under the action of
external sources is studied by means of a pseudo-spectral scheme. A typical pattern is
shown in Figure 2. Solitons can run both upstream and downstream depending on their
amplitude. In the long- and short-wave limits, the problem in equations (3) through (5)
reduces to the Korteweg-deVries and the Benjamin-Ono equations, respectively.

Such soliton behavior in the solutions is an important fact in connection with
experimental observations (Borodulin and Kachanov, 1990; Kachanov, 1991), although
for the case of a flat-plate boundary-layer. Detailed experiments (Borodulin and
Kachanov, 1990; Kachanov, 1991) showed that soliton-like structures are formed in the
K-regime of boundary-layer transition. Large-sized, short-scaled disturbances in the
boundary-layer on a flat plate are governed by the Benjamin-Ono equation (Zhuk and
Ryzhov, 1982; Smith and Burggraf, 1985; Rothmayer and Smith, 1987) - a classic m
equation which admits solitons. Detailed comparison (Ryzhov, 1990) shows that the
theory (Zhuk and Ryzhov, 1982; Smith and Burggraf, 1985; Rothmayer and Smith,
1987) yields a good description of the early stage of soliton formation (when it may be I
considered as two-dimensional) in experiments (Borodulin and Kachanov, 1990;
Kachanov, 1991), not only qualitatively but even quantitatively.

Finally, it should be noted that such solution behavior (resonant interactions
leading to spike formation and solitons) is an inherent feature in inlet-channd flow aswell (Savenkov, 1992).
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SOME AXISYMMETRIC TRANSONIC FLOWS i
by

L. Pamela Cook and G. Schleiniger i
Department of Mathematical Studies

University of Delaware
Newark, Delaware I

USA 3
Transonic flow of a gas through an axisymmetric nozzle or about an

axisymmetric body is discussed. Exact potential theory and small disturbance theory
are considered. Boundary value problems for the stream function and for the potential
are formulated in the hodograph plane in which the equation is still nonlinear. The
shape of the free streamline and sonic line are discussed for sonic and choked
axisymmetric jet flow.
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3 ON SOLUTIONS OF BOTH THE EULER

AND THE NAVIER-STOKES EQUATIONS

1 by
Yu. Shmyglevsky

The Computing Centre
Russian Academy of Sciences
Moscow, Vavilov Street, 40i Rusia 117333

3 In Cartesian coordinates (x, y), the Euler equations

AO = W, (1)

3 D(w,0)/D(x, y) = 6, 6 = 0 (2)

describe two-dimensional teady flows in terms of the stream functions # and the
vorticity w. When 6 = R -'Aw, equations (1', (2) are the Navier-Stokes equations with
R being the Reynolds number. In the partick case

5 A=0, (3)

the viscous flows do not depend on the Reynolds number. At the same time they
satisfy the Euler equation (1) and (2). Over-definition of the systems (1)-(3) creates
the hope o finding some = of solutions and investigating all the viscous flows
independent of R. Integration of the system (1) - (3) can be performed as follows.
Equation (2) admits the two possibilities:

I0 #=OM), (4)

w = c = constant. (5)

I Consider the first possibility. Substitution of (4) into (1) gives an equation of

second order and equation (3) simplifies this relation to the form

3(w~x + 41)0'(w) = W. (6)

This equation includes two unknown functions w(x, y) and Ob(w). Introducing the new
I functions f and F,

f'(w) = [V,"(w)/1wj12, F(x, y) = f[w(x, y)], (7)

I allow (6) to be transormed to an equation with one unknown function

I F2+F = 1. (8)

I
I
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The general integral of equation (8) is known while the second of equations (7) shows I
that

W=fl(F). (9) 3
Substitution of equation (9) into equation (3) gives a connection between fl and F and
equation (8) simplifies it to the form 5

WI'(F) + IY(F)AF = 0. (10)

Equation (10) has sense if AF depends only on F, or H _D(F, F)/D(x, y)=0. The 1
general integral of equation (8) allows two possible functions F. The reverse way via
equations (10), (9), and (7) gives, for one F, a general Poiseuille flow and for another F
gives a new class of flows, which includes the known flow between two rotating
cylinders. Thus the first possibility (4) has been exhausted.

The second possibility (5) is well-known. The functions satisfy the equations (2)
and (3). The general integral of (1) when w = c is

O=#(x, y) +c x 2, AO = 0.

A function , with any harmonic function 0 gives a solution of (1). Three boundary- i
value problems have been solved. Each solution represents flow with zero velocity along
ellipse or a parabola or a hyperbola. On each of the curves 0. = Oy = 0. This leads to
Cauchy problems for the Laplace equation A4 = 0 with the conditions o, = -cx, 9Y =0
on the above curves. All the solutions have been found in explicit forms.

I
I
I
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3 BOUNDARY-LAYER MODELS FOR FLOW PAST A CYLINDER

by

U S.C.R IDennis
Department of Applied Mathematics
The University of Western Ontario5 London, Canada

In this presentation some models, based on boundary-layer theory, are described
for determining the two-dimensional flow of a viscous, incompressible fluid past a
cylinder. They are intended for application mainly to steady-state flow but can be

I adapted to unsteady flow in some cases; this will be discussed if time permits. A
common feature of the models is that they employ the stream function and vorticity as
dependent variables. Thus, whereas it is common to employ the stream function in
boundary-layer analysis, it is less usual to make use of the vorticity directly as a
variable.

It is well known that solutions of the boundary-layer equations for steady flow
past a cylinder break down at the point of separation when the external flow is specified
as potential flow, due to the appearance of the Goldstein singularity. This difficulty is
discussed in detail in the present work and an interacting model is evolved in which the
external flow is, in part anyway, determined from the boundary-layer solution. This is
achieved by means of the use of one of Green's identities, in which the velocity
distribution at the edge of the boundary layer is calculated from integrals involving the
vorticity over the inner flow field. The method is an application of a method proposed
by Dennis and Quartapelle (1989) for the Navier-Stokes equations, although there are
difficulties in applying it to a boundary-layer model of steady-state flow. The reason is
that the Green's identity requires that the vorticity shall be known throughout the
whole inner field of flow, whereas the boundary-layer solution may provide it only in
part of the field; nevertheless, some progress can be made. Moreover, in some cases of
unsteady flow, e.g. those of a cylinder started from rest, the problem is in some sensessimpler since the velocity at the edge of the boundary-layer can be calculated as part of

3 the solution.

By means of the interacting method, it is possible to integrate the boundary-
layer equations beyond the point of separation for steady-state flow. However, the
integration becomes more difficult in the separated region, and this leads to the
development of an improved model of the boundary-layer equations, which is achieved
by making a prior transformation of the vorticity to a new dependent variable. This
transformation attempts to take into account the asymptotic features of the wake at
large distances from the cylinder, while at the same time conforming to the boundary-
layer structure near the cylinder. This model can be integrated beyond the point of

I separation. Several interacting models are discussed, one of which utilizes the Green's
identity.

Calculations have been performed for the case of flow past a circular cylinder and
pisons are made with the standard boundary-layer model (Schlichting, 1979, p.

171).. However, the models are applicable to any cylindrical cross-section if a suitable
mapping is use.I

I Denn~is, S. C. R. and Quartapelle, L. 1989 JuL J. Nner. Methods PW4 9:871.

i Schlichting, H. 1979 Romad= i n =y3 7th ed., McGraw-Hill
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HIGH-REYNOLDS-NUMBER STRUCTURE OF STEADY TWO- 5
DIMENSIONAL FLOW THROUGH A ROW OF BLUFF BODIES

by3
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Moscow

Russia 117192 1
An eztension of an earlier theory (Chernyshenko, 1988) of flow past an isolated body is

escribed. For B crossjflo cascade of bodies a distance 2H apart, the region of validity
of the ezteinded theory covers H> 1. A comparison with numerical calculations is
favorable.

Steady flows around a cascade of bluff bodies have recently attracted
considerable attention. For example, theoretical investigations were carried out by
Smith (1985) and Milos and Acrivos (1986), and numerical calculations have been
reported by Milos, Acrivos and Kim (1987), Ingham Tang and Morton (1990), Fornberg
(1991) and Natarajan, Fornberg and Acrivos (1992). The latest review of the subject
has been written by Fornberg (1992).

A high-Re asymptote of the two-dimensional steady solution to the Navier-
Stokes equations for the incompressible flow through an infinite row of bluff bodies
located at equal distances 2h across the flow, is found. All quantities are normalized
with respect to the velocity at infinity, the fluid density, and the characteristic size of
the body. All bodies are of the same shape and size and possess a symmetry axis
parallel to the undisturbed flow direction. The general sketch of the flow is shown in
Figure 1.

The asymptotics for Re-'oo depend on the behavior of H as a function of Re.
Assume that for sufficiently large Re the ratio H/L (where L is the eddy length) is
fixed. When L(Re) is found, the resulting asymptotics may be considered as I
asymptotica for a given H(Re).

Only the main points of the theory will be given here. Suppose that the eddy
grows indefinitely with increasing Re, but with the eddy length and width being of the I
same order. Then on the eddy scale, the body shrinks to a point and the flow tends to
the inviscid flow consisting of a cascade of touching pairs of symmetric closed-streamline
regions of constant vorticity (by the Prandtl-Batchelor theorem) of equal values and I
opposite signs. Outside these regions, the flow is potential. It has been proved
(Chernyshenko, 1988) that in the correct asymptotic limit, the jump in the Bernoulli
constant across the eddy boundary is zero. Such inviscid flows were calculated by
Chernyshenko 1991) and for the case of an isolated pair of vortex regions by Sadovskiu
(1970) and by Safman and Tanveer (1982). For a zero jump in the Bernoulli constant
and a given velocity at infinity, these Sadovskii flows are uniquely determined by L and
H. Hence the vorticity in the eddy wo. is related to L by the formula

wooL = CI(H/L), (1)

where C1 can be found from numerical calculations.

£
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3 According to the Bobylev-Forsythe theorem(Serrin, 1959), the rate of energy
dissipation is proportional to the vorticity square integrated over the entire flow field.
In Sadovskii flow the vorticity is nou-zy• only inside the eddy. Hence the rate of
energy dissipation is proportional to woL and the rate of energy dissipation equals the
product of the drag and the velocity at infnity. Provided that the contribution to the
integral from the smaller regions is negligible (this can be proved when the complete5 structure is known), the drag coefficient is

c= const ,WL 2/Re = const C?/Re = C(H/L)/Re, (2)

where C(H/L) can be found from the Sadovskii flow. Here cd = drag/(ULR), R is the
length scale and Re = UooR/v. Expressing the drag via far:wake characteristics, and
considering the boundary layer surrounding the eddy and the wake, gives the sameI result.

The vorticity balance yields the third important relation. The vorticity diffuses
from the eddy and is then convected downstream in the wake. The vorticity also
diffuses toward the symmetry line where it is zero. The loss of vorticity is compensated
by the vorticity shedding from the body. Naturally, due to symmetry the total
vorticity flux from the upper and lower parts of the body is zero. Here we consider only
the part of the flow above or below the symmetry line. As the Reynolds number based
on the eddy length is ReL, the thickness of the wake and boundary layer surrounding
the eddyyjs of the order L/4ReL = L/4R. Hence the vorticity flux is of the order
wooL-/ze. The vorticity flux to the symmetry line has the same order of magnitude.

I Therefore the vorticity flux F from the body is

F = C3 ,woo--F,14R. (3)

I Here C• cannot be found from the Sadovskii flow calculations alone, a careful
examination of the boundary layer surrounding the eddy is necessary.

The last relation can be found from the body-scale flow, which is a Kirchhoff
flow with free streamlines. The vorticity is convected downstream from the body in the
mixing-layer jea_ the free streamline. Hence the vorticity flux F is
Juwdn = -Ju--(u -u_)/1, where u_- and u+ are the velocities at themixing
layer boundari; and the integral is taken across the mixing layer. Inside the eddy in
the Kirchhoff flow the velocity is zero. Hence the velocity on the free streamline is
u + = ,F'-2F. Therefore the drag coefficient is

cd=kd=u•+ - 2kdF, (4)

5 where kd is the Kirchhoff drag coefficient for a free-streamline velocity equal to 1.

Now the system (1-4) allows the four unknowns L, woo, c4 and F to be found
easily, giving all the main characteristics of the flow. The resulting formulae can be3 written in the following form,

wo= - 2CD2(b)/(k'dRe), (5)

F =- C/(2kdRe), (6)

t L _ kdRe/(2D2(b)g-C), (7)I

I
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cd = C/Re. (8)

The function D0(b) here is part of the expression for C3 following from the quantitative
analysis of the vorticity balance in the recirculating layer (Chernyshenko, 1982, 1988). 3

b 0.1 0.2 0.3 0.5 0.7 0.9 5
D0 (b) 0.0090 0.1294 0.1619 0.2217 0.2857 0.3744 I

To use Chernyshenko• (1991) numerical results, C and, in part, C3 are 3
expressed via C = C(H/L)= g4oS, where S is the total area o1 both halves (upper and
lower) of the eddy, b = b(H/L) which is the ratio of Ju(s)ds (taken along the lower eddy
boundary from the forward to the rearward stagnation point) t the circulation of the
velocity around the lower hal of the eddy and a = a(H/L) = .

According to (7), L = O(Re) for a fixed H/L. Hence this theory yields an
asymptote for Re-+o, with H = O(Re). Careful examination shows it to be valid in a I
wider range Re > ,1, H > 1.

The asymptotic structure includes other characteristic regions apart from the
already mentioned eddy scale, body scale, and recirculating boundary layer. These I
regions provide a proper matching, ensuring self-consistency of the theory.

For comparison of the asymptotic results with numerical calculations, the vital
question is: how large must Re and H be to expect a reasonable agreement? According
to the theorf the velocity on the free streamline near the body equals
S= 2 C/(k Re) and therefore tends to zero. Hence good agreement can be expected
only for /k e ( 1. For the flow past an isolated body C F 73, and it is even larger

f sde ws (Chernyshenko, 1991). For this reason a good agreement could hardly
be e for the Reynolds numbers achieved so far in numerical calculations. Figure
2 shows a comparison of the eddy length given by (7) with the numerical results of
Fornberg (1991) for a row of circular cylinders and of Natarajan, Fornberg and Acrivos
(1992) for a row of flat plates. It is worth noting that the transition in the behavior of
the numerical results as a function of Re, most dearly seen in Fornberg's results for
H = 50, occurs approximately for C/(kaRe) = 1. The comparisons of other flow I
characteristics are similar. The numericý results approach the theoretical ones with H
or Re increasing. On the whole, it may be concluded that, although the Reynolds
numbers achieved in numerical calculations were not sufficiently large to exhibit dearly
an asymptotic behavior, and in the case of Natarajan, Fornberg and Acrivos' (1992)
calculations, the values of H also were not sufficiently large for comparison with our
theory, the tendencies observed in the numerical results support the theory. 3
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Figure 2. The eddy length. Natarajan et al. (1992) results are marked with N and
those of Fornberg (1991) with F. The numbers near these letters are the
values of H. The curve is the theory. For the Natarajan results,I
Re = 50 -300 at intervals of 50, from right to left. For the Fornberg results,
Re =50 -400 and for H =500, Re =50 -350 at intervals of 50.3
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3 WEAKLY AND FULLY NONLINEAR EFFECTS IN CHANNEL
FLOW TRANSITION: AN EXPERIMENTAL COMPARISON

3 by
R. G. A. Bowles and F. T. Smith

University College London
Gower Street, London WC1E 6BT

United KingdomI
This work aims to identify the weakly (I) and fully nonlinear (II) processes at

work in channel flow transition and to make comparisons of the predictions of the
theory with the experimental results of Nishioka et al. (1979) on the transition of plane
Poiseuille flow. Comparisons are also made of some aspects of the theory (HI above)
with experimental results on transitional separated boundary-layer flow. A -bypass*5 transition criteria is suggested.

The method used to approach the problem involves a scale analysis of the
governing equations which leads to a nonlinear interactive boundary-layer system
governing transition over relatively long scales, although (1H) is also relevant to short-
scale transition. Analytical progress is made possible by considering a disturbance
which is of a relatively high frequency on these scalings and whose short-scales allows a
weakly nonlinear analysis to be pursued (I).

This weakly nonlinear system governs the interaction between a three-
dimensional wave and a small perturbation to the mean boundary layer profile which
varies over relatively slow spatial and temporal scales. Similar equations have been
derived by Stewart and Smith (1992) in the bound -layer context and comparisons
made with the experimental work of Klebanoff et al. 1959). These authors show that
the governing equations are subject to a finite time/distance breakdown with a
shortening of the spanwise scales and an increase in the amplitude of the disturbance.
This is interpreted as the generation of "streets', and the predictions of the theory
compare favorably with experiment. A more nonlinear stage is then reached in which
the total mean flow profile is altered from a uniform shear profile and the phase speed
of the wave becomes unknown. The governing equations in this stage are the full
interactive inviscid boundary-layer equations, with no streamwise pressure gradient and
a nonlinear forcing from the wave, allied with a viscous sublayer close at the wall which
may not remain passive.

Initial indications suggest that these fully nonlinear and three-dime onal
equations are subject to the finite-time breakdown described in Smith (1988) in whichI the streamwise pressure gradient becomes infinite, corresponding to nonlinear wave
breaking and the appearance of the first "spike" in the transition process (II above).

_ This breakdown is possible if a certain integral of the mean flow profile becomes zero as
the flow develops, and this condition is proposed as a transition criteria for 'bypass'
transition (i.e., omitting stage I) in sufficiently strong disturbance environments. It is
shown that the experimental profile measured by Nishioka et al. at the occurrence of
the first "spike' satisfies this condition to within acceptable accuracy.

This test is also used in a comparison with transitional separated flow in
experimentally determined velocity profiles provided by Professor M. Gaster.

IN
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I ON THE TRANSITION TO INSTABILITY IN FLOWS

DEPENDING SLOWLY ON A SPATIAL VARIABLE:

3 THE STABILITY OF PIPE FLOW

by

I A. G. Kulikovsiy
Mathematical Steklov Institute

Vavilova 42
Moscow, Russia

3 Asymptotic methods are considered for constructing the linear perturbation modes
which are responsible for instability of solutions that depend weakly on one spatial
coordinate (i.e. depending on z/L, where L is large). Recently, in papers by Huerre and
Monkewitz (1990) and Monkewitz (1990), one criterion of instability (referred to as a
global stability criterion") has been established and applied to some specific flows. This
was found under the assumption (which seems to be rather common) that the
perturbation mode yielding instability consists of two waves whose wave numbers have
two very close (in the limit coinciding) turning points in the z-plane. This instability is
always accompanied by fulfillment of a local criterion of absolute instability in some
interval on the real z-axis. The same criterion was obtained in Iordanskii (1988) by a
different method.

In earlier papers (Rukhadze and Silin, 1964; Zaslavsldi, 1982; Kulikovskiy, 1985),
the perturbation modes in the most common cases are shown to consist of a dosed
succession of waves (a chain), turning one into another. The purpose of the present
article is to demonstrate a physically real example of a flow in which the appearance of

instability is connected with a wave chain containing more than two waves.3 The oscillation of a compliant pipe with flowing fluid may be described by the
equation:

I Here pl, p2, v, F, D are slowly varying fimctions of z and assumed to depend on a
numbei of parameters. It is found that a domain of parameter variations exists, in

I which

1. the instability manifests itself by appearance of a wave chain containing four
waves;

2. everywhere on the real z-axis, the local condition of absolute instability is not
valid.I

I 1The term global stability was employed previously in a different sense for the
class of instabilities of uniform flows with boundary conditions (Kulikovsliy, 1966;

SLifshitz and Pitaevskii, 1981).

I
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3 ASYMPTOTIC EQUATIONS FOR THE BOUNDARY LAYER

USING A DEFECT FORMULATION

I by
J. Ph. Brazier, B. Aupox &ad J. Cousteix

ONERA/CERT - D-partement A6rothermodynamique
2 Avenue Edouard Belin B.P. 4025

31055 Toulouse Cedex3 France

The standard laminar boundary layer theory, as first developed by Prandtl, gives
accurate predictions when the boundary layer thickness is sufficiently small, so that the
inviscid flow can be assumed to be constant across the boundary layer. But when the
inviscid flow variations cannot be neglected, the matching of the boundary layer with
the outer flow is no longer ensured, since the standard matching procedure only involves
the inviscid flow values at the wall (Figure 1-left panel). This occurs for strongly
sheared inviscid flows, such as the shock layer along a hypersonic blunt body. To deal
with this phenomenon, in 1962 Van Dyke built an extended theory, called higher order
boundary layer theory, relying on matched asymptotic expansions, and embedding
Prandtl equations. Thereby he verified several second order effects such as wall
curvature, velocity gradient, or displacement, and showed their influence on the global
coefficients like the skin friction or the wall heat flux. When limited to second order
expansions, the matching is improved (Figure 1-right panel) but is not yet fully
satisfactory if the inviscid profiles are not liear.

To ensure a smooth matching whatever the inviscid profiles, we propose to use a
defect formulation for the boundary layer, together with matched asymptotic
expansions. In the wall region, the variables dealt with are no longer the physical
variables but the difference between the viscous solution and the outer inviscid pruoile,
labeled E in Figure 2. These new variables called defect variables and labeled D; they

are expanded in powers of a small parameter e = 1/4't, where Re is the Reynolds
number. A stretched normal coordinate y = y/e is also introduced, as in the Van Dyke
theory. The expansions for the outer region are identical to Van Dyke's. Then these
expansions are substituted into Navier-Stokes equations, and the terms of like powers in
e are equated, giving a new system of boundary layer e, -ations; the properties of these
equations are quite similar to Van Dyke's apart from the matching, which is obtained
by letting the defect variable" tend to zero outside of the boundary layer. Thus the
defect solution merges smoothly into the external inviscid flow even with a first order
expansion. These equations are parabolic and can be solved using fast space marching
methods, as long as the boundary layer remains attached.

The defect equations have been first derived for incompressible laminar flows,
and particular attention has been paid to self-similar solutions for a constant shear flow
past a flat plate, which emphasize the differences and analogies between the standard
and defect approaches. For this particular case, the first order defect solution is seen to
stand in an intermediate position between Van Dyke's first and second order solutions.
Then, a two-dimensional compressible flow has been considered. The defect boundary
layer equations have been written and solved along plane or axisymmetric hypersonic
hyperboloids. When compared with the standard boundary layer (Figure 3), the defect
solutions generally show a closer agreement with Navier-Stokes solutions, allowing a
better prediction of the skin friction and the wall heat flux, for a similar cost.I

I
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3 ASYMPTOTIC STUDY OF DISSIPATION

AND BREAKDOWN OF A WING-TIP VORTEX

3 by
V. N. Trigub, A. B. Blokhin, and L. N. Simakin

INTECO sa
Via Mola Vecchia 2A 03100

Frosinone, ItalyI
The steady, axisymmetrical wig-tip vortex is studied in this paper by means of

asymptotic methods in the limit of high Reynolds numbers. The smooth regrouping of
the vortex under the action of viscous forces is described by a quasi-cylindrical
approximation.

The initial conditions were chosen from the two-parametric class of velocity and
circulation profiles:

m uO=a+(1-a)e-y' e°= goo(1-e -y)' y -- (r/to)2/2"

The velocity and circulation distribution upstream from the position of a vortex
breakdown (Leibovich, 1978) are approximated well by such profiles.5 The solutions of the quasi-cylindrical approximation are thoroughly analyzed
numerically, and it is shown that saddle point bifurcation appears at certain critical
values of circulation. At these values the solution may be continued in two ways; as a
supercritical branch which approaches Batchelor's limit far downstream and aIa
subcritical one, which passes the second, nodal-point bifurcation.

The problem of coutinuation for the quasi-cylindrical approximation with the
initial conditions stated at the nodal point does not have a unique solution but, instead,an infinite one-parameter family of the solutions controlled by an arbitrary constant c.

The problem is not correct beyond the second bifurcation point, and an additioM11
downstream condition must be specified to provide uniqueness of the solution. The
parabolic equations of the quasi-cylindrical approximation allow the downstream
disturbances to propagate upstream.

A similar situation is known in the problem describing of hypersonic boundary
layer on a flat plate in the strong interaction regime. It was discovered by Neiland
(1 70) (and extended by Brown, Stewartson and Williams (1975)) that an eigenfunction
Ncxf(q), where x is the distance from the leading edge, i7is a self-similar variable, c is an
arbitrary constant and k > 1, appears in the asymptotic expansions of the solution near
the leading edge, which is the singular point for the problems of interest. The solution
of the parabolic boundary layer equations is not unique and one downstream condition
for a scalar quantity must be added. Usually this condition is stated for the downstream
pressure. It is possible to change the solution in the whole interval from the leading
edge to the last downstream position by changing the downstream pressure. Therefore,

I upstream propagation of the downstream disturbance exists.

The flow past the second bifurcation point was studied numerically, and it was
shown that the solution of the quasi-cylindrical approximation with large reversed flow
regions exist. Results for eight solutions obtained for X. = 0.1, x, 0.3, 0.32, 0.35, 0.4,
0.45, 0.55. 0.8, and 1.0 are shown in Figure 2. An important feature is that the
solutions on the front portions of intervals have a weak sensitivity to changes in theI

I
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downstream conditions. The solutions 1, 2, and 3 were obtained with additional
downstream conditions:

d (xD) =0.5

The asymptotic expansion of such solutions far downstream was constructed, and
it emerges that the reversed flow region expands exponentially. This process is halted
by elliptical effects in the external flow. An asymptotic theory for large reversed flow
regions is suggested including viscosity and elliptical effects. Numerical solutions for
unbounded vortex breakdown parabolically expanding far downstream are presented in
Figure 3. The values f and x correspond to the specially scaled radius of the I
recirculation zone and axial coordinate. Solutions 1, 2, 3 are terminated at the singular
points; 5, 6 correspond to a linearly expanding zone and an intermediate solution 4 to
the parabolically expanding one.

The general asymptotic problem statement which describes the flow near the
bifurcation points is used to study the asymptotic solutions near the first bifurcation
point. The problem is investigated numerically and two kinds of solutions, which may I
be treated as transcritical jumps and marginal vortex breakdown, are found. A number
of solutions corresponding to marginal vortex breakdown are presented in Figure 4
where distributions of the disturbance of axial velocity are shown. The curves 1-5 are
close to singular solutions of the quasi-cylindrical approximation far upstream. The
curve 6, for example, is the singular solution of the quasi-cylindrical approximation
which coincide far upstream with solution 5. The elliptical effects in the vicinity of the
saddle bifurcation point remove the singularity and permit finding the solution which I
tend to Batchelor's limit far downstream.
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ENERGY TRANSFER FROM A TURBULENT BOUNDARY LAYER

MEAN FLOW TO 3D LARGE SCALE WAVES

by 5
F. Stephan and E. Deriat
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France 3

Whereas stability concepts have commonly been associated to "transition to
turbulence' phenomena, it is only since 1956 (Malkus, 1956) that stability and fully I
developed turbulence have been viewed together. The initial aim was modeling (Malkuas,
1956). To this end Malkus assumed marginal stability of his (chanel) mean velocity
profile, relying on the Orr-Sommerfeld equation. Later, Malkus (1983) stressed the I
sensitivity of the numerical results to the details of the basic profile.

Other authors, like Reynolds (1972) and Reynolds and Hussain (1972), were
interested in large scale waves within turbulent shear layers. Reynolds (1972) discussed I
the meaning of instability in the context of turbulent mean flows: instability is a
criterion for the non-existence of the considered model and, simultaneously, for the
existence of the corresponding waves. Reynolds and Hussain (1972), using a triple
decomposition, formed an equation for the organized (or wavy) motion energy, in which
the perturbed Reynolds stresses are presumed to play a prominent part in a wide region
of the wall shear layer.

This bibliography permits understanding of our contribution to this conceptually
and technically complex topic. Since the work started by Pace and D&iat (1990), we
have been interested in the linear stability study of a turbulent boundary layer mean
velocity profile. Our approach uses asymptotic methods; a computational code, as well
as a closure model, are necessary in order to go beyond the first approximation.

The first original part of our work is that the asymptotic nature of the basic flow
is taken into account. This implies marginal stability, assumed by Malkus (1956), and 3
the main part of the perturbed Reynolds stresses presumed by Reynolds and Hussain
(1972) and means that the 'critical layer' is the defect layer.

Then, a mixing-length model is used and a dispersion relation giving the second
approximatioi, of the complex phase velocity is solved. We show that it is possible to
lower the sensitivity of the results to the details of the basic profile by a numerical
artifact; this has to be linked to the difficulty underlined by Malkus (1983). The modes I
are weakly damped on scales corresponding to inviscid flow.

Nevertheless, we prove that energy is transferred from the mean flow to a part of
the considered waves by computing the production term (see below: R(a, -y), where a U
and y denote the longitudinal and transverse wavelengths, using the boundary layer
thickness length scale) of the energy balance equation of the perturbations.

The following step will be the weakly non-linear interaction of 3D waves which
are susceptible of resonance. I

I
I
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FLOW SEPARATION AND NON-UNIQUENESS

OF BOUNDARY-LAYER SOLUTIONS

by5

G. L. Korolev
Central Aerohydrodynamic Institute

Zhukovsky-3, Moscow Region
Russia 140160 I

The solution of the 2-D steady laminar boundary layer equations in presence of
an unfavorable pressure gradient is investiatle. It is shown that for separation, the
solution of the boundary-layer equations behind a point of zero friction is generally not I
unique. Examples are given as well as procedures to generate such solutions. The non-
uniqueness of boundary-layer equations solutions has previously been considered in some
self-similar cases (Stewartson, 1954; Smith, 1984).

Let (x, y) be a Cartesian frame of reference, fitted to the body surface, with
.fu, vbeing components of the velocity vector in the (x, y) directions respectively and p
is te pressure. The boundary-layer equations and boundary conditions in
streamf-nction/vorticity formulations are as follows:

,9w aw 8,2w 0-20&8~k 1ux v u=W, V=- , w=W (I)I

j&(x, 0) = oyl(x, 0) = 0, w(0, y) = w0(y) (2)

w--*0, when y-•oo (3)

a X ) =d (4)

To construct solutions with flow separation and in which the GoldsteinI
singularity is absent, an inverse problem is set first. Instead of the condition (4), one
considers a function D(x) defined by 3

D(x)= J w(x, y)ydy. (5)

The Prandtl equations are solved using this given distribution D(x) and the
corresponding 'x) distribution is found afterwards using a procedure described by
Korolev (1987). An example was constructed using the following:

w0 (y) = (r• +p ) exp[- aor(1 +7y 2)- 1] (6)

To=0.7, p =4, a=0.583, y=3.57 (7)

D'=15, 0<X<XT, D'=15[1+4(x-xT)3]- 1 , XT_<X<Xc (8) I
I
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3 D'= -x 2(0.2 -x 2)-112, xCx<xE, D'= -1, x>xE (9)

I XT = 0.3 3 , x. = 0.51, x 2 =x-x x0 = 0.71, XE = 0. 85  (10)

The solution with a given distribution, D(x) corresponds to a p'(x) distribution,
depicted in Figure 1 by a dashed fine and a flow pattern with separation and
reattachment points (Figure 1, curve 1). Using the same distribution p'(x), we build
two more solutions, deviating from the first one by a different distribution of functions
behind zero friction points. For this purpose, we again solve numerically the system (1-
3), where p'(x) is found from the first solution. However, as a zero approximation, the
vorticity of the whole field is taken w0(y). The numerical solution, coincident with the
first one in advance of the separation point changes to a second solution behind the
separation point, but the reverse flow region is absent (Figure 1, curve 2).

The third solution differs from the first one downstream of the reattachment
point and is constructed in several stages. First, immediately downstream of the
reattachment point, one postulates D(x) so as to ensure the slope of the skin friction to
be equal in magnitude but opposite in sign to that before the reattachment point; then

pA(x) is taken from the first solution. Once convergence is obtained on the first vertical
line of the grid downstream of the reattachment point, one further postulates the D(x)
close to the value on the previous vertical line; several interactions are carried out, and
afterwards p'(x) is used from the first solution. The third solution, obtained in this
way, is given in Figure 1 and is denoted as curve 3.

An interesting example of nonuniqueness in the solution of the Prandtl equations
is the problem of a flow about the parabolic leading edge of a thin airfoil. The
boundary conditions for the boundary-layer equations are as follows. An initial
vorticity profile is determined from a condition of a flow stagnation (w0(y) = 0) and the
pressure gradient distribution described by (Werle and Davis, 1972)

U,(x) =(Y+k)(Y2+I)-1/2, x= 1 (1I+ Yj) /2 dYl, p'(x) = Ue(x)U'C(x) (11)

-h

The parameter k characterizes the extent of asymmetry of the flow and depends on the
angle of attack and the airfoil camber line slope. For k <_k0 , where kI = 1.17, the
surface friction is positive everywhere and has a minimum. For k> ka the Goldstein
singularity appears in the solution of the equations (Werle and Davis, 1972). At k = ko
the friction minimnum approaches zero, and in the vicinity of a zero friction point, a
solution is realized which features discontinuously differentiable streamlines (Ruban,
1982) (Figure 2, curve 1). A second solution of the boundary layer equations at k = k0is constructed analogously to the solution 3 (Figure 1), taking into account the equality
of friction slope angles before and after the separation point. The flow described by
such a solution (Figure 1, curve 2) unlike the first one, does not contain ever flow
region, has a separation region, which grows without bound according to x/as x--oo.

Thus the results show that the solution of the boundary-layer equations with
continuous boundary-condition evolution and exposed to unfavorable pressure gradients
is in general case not unique. The presence of a single zero friction point on the body
surface may lead to generation of extra solutions and alternate descriptions of separatedU flows.

I
I
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U INVISCID-VISCOUS SEPARATION IN UNSTEADY

BOUNDARY LAYER SEPARATION

I by
K. W. Cassel and J. D. A. Walker

Department of Mechanical Engineering and Mechanics
354 Packard Lab, 19 Memorial Drive West

Lehigh University
Bethlehem, Pennsylvania 18015

USA

The evolution of the separation process for an unsteady two-dimensional
boundary layer at high Reynolds number is considered. It is known that solutions of
the classical boundary layer equations often develop a singularity in regions of
prescribed adverse pressure gradient. The analytical form of this terminal boundary
layer structure for two-dimensonal flows was determined by Van Dommelen and Shen
(1982) and Elliott, Cowley and Smith (1983). This structure reveals a sharp spike in
the boundary layer thickness in a region narrowing in the streamwise direction. As the
boundary layer evolves toward the singularity, it bifurcates into two shear layers above
and below an intermediate vorticity depleted region which is expanding normal to the
surface as the singularity is approached. This terminal state is independent of the
specific form of the external adverse pressure gradient responsible for initiating the
eruptive process. Consequently, this structure and any subsequent stages are believed
to be generic and apply to most cases of unsteady boundary layer separation in two-
dimensional incompressible flow.

As the boundary layer starts to separate in a local eruption away from the
surface, the external pressure distribution is altered just prior to the formation of the
separation singularity due to inviscid-viscous interaction; this is called the first
interactive stage and was formulated by Elliott et al. (1983). The three flow regions
delineated in the terminal boundary layer structure evolve during this stage subject to
an interaction condition relating the external pressure and the growing displacement
thickness through a Cauchy principal-value integral. The two shear layers remain
passive, while the flow in the intermediate region, governed by the inviscid streamwise
momentum equation, is altered by the interaction.

3 The numerical solution of the first interactive stage was obtained in Lagrangian
coordinates; numerical solutions in Lagrangian coordinates have significant advantages
over traditional Eulerian formulations for unsteady separation problems of the type
considered here. The solution was found to exhibit a high frequency Rayleigh
instability resulting in an immediate finite-time breakdown of this stage. When a
numerical calculation is attempted, the instability does not permit a grid independent
solution to be found, because smaller grid sizes admit shorter wavelength, faster growing
modes. The presence of the instability within the formulation of the first interactive
stage was confirmed analytically by a linear stability analysis.I

I
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GENERATION OF SECONDARY INSTABILITY MODES BY TOLLMIEN-

SCHLICHTING WAVE SCATTERING FROM UNEVEN WALLS

by3

M. V. Ustinov
Central Aerohydrodynamic Institute (TsAGI)

Zhukovsky-3, Moscow Region
Russia 140160 I

It is well-known that the rapidly growing three-dimensional disturbances
originate when the amplitude of two-dimensional Tollmien-Schlichting (T-S) waves
exceeds a threshold value of approximately 1%. The growth of these disturbances is I
described by the secondary instability theory developed in Herbert (1985). Nevertheless,
the problem of the initial three-dimensional disturbance transformation into the
secondary instability modes obtained in Herbert (1985) has not yet been investigated. I
In this study, the problem is solved for disturbances produced by a plane T-S wave
scattering from the unevenness of a streamlined surface. The theory is developed for
plane Poiseuille if3w, but the results can be easily extended to boundary-layer flow. 3

Consider the Low of a viscous incompressible fluid in an infinite plane channel.
The shapes of the channel walls are given by Z. = +1 I + d÷ (x, y) wihpe f ± (x, y) O 0
only in the neighborhood of the origin of coordinates. The ow fickd V(x, y, z, t) may
be written as a superposition of the two-dimensional primary flow Vf(x, z, t) and small
three-dimensional disturbances eVp(x, y, z, t), induced by the unevenness of the walls
according to 3

where 3
vf = V o(z) + Vo(z) COS (ox- wt) + Vfs(z) sin (ax- wt)

-- 4 -- 1 _- -

Vp = V0 (x, y, z) + Vc(x, y, z) cos (-wt) + V,(x, y, z) sin (-wt)

and I
Vo = {u0 , Vo, wo} VC = {ucl vC, wc} Vs = {US, vs, wa}.

The primary flow is a combination of Poiseuille flow and a finite-amplitude T-S wave
which is taken to be strictly periodic in space and time. After substitutiou in Navier-
Stokes equations, linearization in e, and some algebraic transformations, a linear set of
equations with periodic coefficient for wo, wc, ws, 1.0 , l 1, is obtained. The functions
io, , qi. are the shape functions for the vertical vort :ity component 17, viz.

r/= 0(X, y, z) + c(x, y, z) cos (-wt) + r17(x, y,, z) sin (- wt).

The boundary conditicus are applied at the walls z = + 1 through linearization of the
no-slip condition at the walls. We will assume that all disturbances tend to zero as I
y--+ oo and x- -0oo. No boundary conditions for x-- + oo are set.

In the subsequent discussions, we assume that the unevenness is symmetric

I
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3 about the plate at y = 0, i.e. f± (x, y) = f ±x, -y). If such an assumption is made, one
can readily see that w0, wC, ws are even and IJo, %7i, • are odd functions of Y.

Fourier transforms of the equations and boundary conditions are taken, with
cosine- and sine-Fourier transforms in spanwise direction being used for the even and
odd functions. A complex Fourier transform in the streamwise direction is used for all
functions. The Fourier transforms of the functions u, v, w, 71, f- will be denoted by U,
V, W, H, F and k, and 8O will be used for the streamwis-e and spanwise Fourier
variables. Ater transformation, a set of linear ordinary differential equations for
functions W., We, W5, H Ho, H, of k, k +a and k-a is obtained. The functions of
the last two arguments appear as a result of the Fourier transforms of the terms,
including the periodic coefficients.

The solution of this set of equations is difficult due to presence of the same
functions but with different arguments. "Phese difficulties may be avoided if we assume
that longitudinal size of the unevenness t s j large in comparison with the wavelength of
the primary wave. In this case the problem is reduced to the set of equations for
functions Wo, Ho, W, C 1 W i, Hcl, H of unique argument k, which may be solved
numerically. (Here WCE) =( k-a), H1 , Hca, H., are defined analogously).

Let us assume solutions of the above problem to be analytical functions of
complex variable k. If all poles of these solutions lie in the upper half of the complex k-
plane, the classical expression for the velocity disturbances given by inverse Fourier
transformation is valid. If one or more poles are located below the real axis, such a
solution is not consistent with the physical meaning of the problem discussed. As
shown in Bogdanova and Ryzhov (1982), the special terms defined by the residues of
these poles should be added to the classical solution to obtain the correct solution.
Because the classical solution tends to zero as x--+ + oo, disturbances at a large distance
downstream of the unevenness are determined by the exponentially growing additional
terms associated with the secondary instability modes. When the primary wave
amplitude is sufficiently large, the two poles in the lower part of complex k-plane
located on the imaginary axes are found numerically. The pole, associated with the
most unstable secondary instability mode, corresponds to even function Wo.z); the
second pole is associated with the mode having an odd function W 0 (z). By oosing
asymmetrical boundary conditions f_- (x, y) = f+ (x, y), the second pole is removed and
only the pole located at the point ko = - iu(fl) remains. The amplification rate a as a
function of f for disturbances associated with this pole is shown, F;*ne 1. Curves 1
and 2 correspond to primary T-S wave amplitudes a=.max ufc+ufs= 0.0182 andI0.0343.

In accordance with the above discussion, the following expression for the velocity
disturbances at large distances from the unevenness may be written

I u(x, y, z, t) = uo(x, y, z) + ua(x, y, z)ei(az W-t) + u*(x, y,?z)e - i(az-), (1)

Swhere
u= __ J2 u8 0 (fl, z)eff(/)Zcos fly dfl, ua = 4• J U5 a(fl, z)eU(Pl)Zcos fly dfl, (2)

l nd 0 0

Uso --- ifo res S ua -= 2--i [i(ko+a) res W - kreSHcl] (3)
k-k=ko , k+ p2 "=k

If the longitudinal and spanwise extent of the unevenness are small enough, F (k., f)3 are proportional to the unevenness volume. Since residues of all functons in

I
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equation (1) are proportional to F±.(k0 , P), the velocity disturbances from such an 3
unevenness should be proportional to its volume.

The presence of maximum of or(fi) inf P = P allows us to use the Laplace method
for the evaluation of integrals in equations (2) as x--ý + o0 and

u.o A(x, y) uo(Po, z) cos P. y u. P A(x, y) z..l, z) cos P. y (4)
A(x, y):=W2-4Q( a. ,(,) a=-o(fo) -0 1 o I

a,- 2d2(f°)2 (d#2

Here A(x, y) determines the disturbance amplitude and a curve A(x, y) = C constant
may be treated as the boundary of the disturbed reion. The equation of this line is

As x--i + co this boundary line approaches a wedge with apex angle given by I
cf = 2 arctg (24 Xa"'). (6)

This angle as a function of the primary wave amplitude is shown in Figure 2. The
shape of disturbed domain obtained here is similar to the turbulent wedge appearing
downstream of a surface hump in experiments. 3

In deriving asymptotic formulae (4) - (6), only the existence of the pole in the
lower part of complex k-plane and the form of or(f) dependence are used. The position
of this pole is independent of the unevenness shape and dimensions and is defined by
the amplification rate of the secondary instability mode. Consequently, (4) - (6) are
valid for short unevennesses with I < a- 1 also. For such an unevenness, the
proportionality of velocity disturbances to unevenness volume is valid, but the
proportionality coefficient cannot be determined by the method presented above.
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OBLIQUE INSTABILITY WAVES IN 3
NEARLY PARALLEL SHEAR FLOWS

by 3
M. E. Goldstein

National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135USA

Asymptotic methods are used to describe the nonlinear self-interaction between a
pair of oblique instability waves that eventually develop when initially linear, spatially
growing instabilities evolve downstream in nominally two-dimensional unbounded or
semi-bounded, laminar shear flows. The Reynolds number is assumed to be large
enough so that the flow is nearly parallel, and we suppose that some sort of small-
amplitude harmonic excitation (i.e., an excitation of a single frequency) is imposed on
the flow. The initial motion just downstream of the excitation device then has
harmonic time-dependence and, within a few wavelengths or so, is well described by
linear instability wave theory.

In highly unstable flows, such as free shear layers, jets, and (separated or
unseparated) wall boundary layers with 0(1) adverse-pressure gradients, the peak linear
growth rate is of the same order as the inverse shear-layer thickness A-1, but in the-1
more stable flows, such as flat-plate boundary layers or unseparated boundary layers
with relatively weak adverse-pressure gradients, the peak growth rate is typically small
compared to A - 1. The latter case usually obtains for most wall boundary layers which I
remain unseparated.

However, even in flows where the peak lnear growth rate is O(A-), the local
growth rate is usually small (relative to A - ') by the time nonlinear ects set in
because mean-flow divergence effects tend to cause the growth rate to decrease as the
instability wave propagates downstream.

We begin by considering the initially linear stage just downstream of the l
excitation device. In some flows, such as a supersonic free shear layer, or a flat-plate
boundary layer in the relatively low, supersonic Mach-number regime, where the so-
called first-mode instability is dominant, the most rapidly growing mode is an oblique I
wave, so that the oblique mode self-interaction that is of interest herein is likely to be
the first nonlinear interaction to occur. However, in most flows, it is the plane wave
that exhibits the most rapid growth, and some intermediate interaction must occur
before the oblique modes can interact with themselves. This intermediate stage can
involve the parametric interaction of the oblique modes with the plane wave or with
some pre-existing spanwise distortion of the mean flow. This stage can be treated
simultaneously with the self-interaction stage if we begin by considering a resonant triad I
of instability waves imposed on a slightly distorted mean flow in the initial linear region
- a plane fundamental frequency wave and a pair of oblique equi-amplitude
subharmonic waves, with the same streamwise wave number and frequency but with
equal and opposite spanwise wave numbers. The latter two waves combine to form a
standing wave in the spanwise direction that propagates only in the direction of flow -
which is the situation that most frequently occurs in wave excitation experiments that
typically involve relatively long excitation devices placed perpendicular to the flow.

I
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3 Since our scaling requires that the instability-wave growth rate be small in the
nonlinear region of the flow, and since the Reynolds number is assumed to be large, the
first nonlinear reaction to occur must take place locally within the so-called "critical
layer" where the mean-flow velocity is equal to the common phase velocity of the two
or three modes that interact there. The flow outside the critical layer is still governed
by linear dynamics, which means that it is given by a slightly distorted locally parallel,
mean flow, plus a pair of oblique instability-wave modes plus a plane wave.

The instability wave amplitude (or amplitudes) is (or are) completely
determined by nonlinear effects within the critical layer. However these nonlinearities
are weak in the sense that they enter through inhomogeneous terms in a higher order
problem, rather than through the coefficients in the lowest order equations. The
instability wave amplitude (or amplitudes) is (or are) then determined by an integral
differential equation (or a pair of integral differential equations) with quadratic to
quadic-type nonlinearities. The most important feature of this equation is the oblique
mode self-interaction terms that eventually lead to a singularity at a finite downstream
position. It is shown that this type of interaction is quite ubiquitous and is the
dominant nonlinear interaction in many apparently unrelated shear flows, even when
the oblique modes do not exhibit the most rapid growth in the initial linear stage.
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